ABC 130 f##3i

satashun, DEGwer, yuma000, yosupo, gazelle

2019/06/15

For International Readers: English editorial starts on page 8.

A: Rounding

FESGED I, X < ARS 0, z>=A7%5 10 2ZHNOTHERWTT,
FEEGEY)—2a—F 1IRLET,

Listing 1 Rounding 2254

1 #include <bits/stdc++.h>

using namespace std;

int main() {
int X, A; cin >> X >> A;
puts(X < A 7 "O" : "10");
return O;

}

%28

o N O

B: Bounding

FEBRC Dy, Do, ..., D1 ZWERICHES> TEB L, ZRZNOEEDN X DT E)»HETIUE L NT
¥, WEEHRR & ZZMEHRE I O(N) T,
FiH R —2a—F 2R L ET,

Listing 2 Bounding FZZ54i

1 #include <bits/stdc++.h>

2 using namespace std;

4 int main() {

5 int N, X; cin >> N >> X;
6 vector<int> D(N + 1);
7 D[0O] = 0;

8 for (int i = 0; i < N; ++i) {
9 int x; cin >> x;

10 Dli + 1] = D[i] + x;

11}

12 int ans = O;

13 for (imt i = 0; i <= N; ++i) {

14 if (0[i] <= %) {
15 ans++;

16 }

17 X

18 cout << ans << endl;

19 return O;

20 }

C: Rectangle Cutting

Lz ot (z,y) ERABORLZN GBS L) BERTRAELZ > TZ20H3Ica3 75L&, K
EL BV OHBIE2AEDOETOMBEICE D, TURKTY, £/, HLZHES BV X) REMTY - 728
A, PLEGTHOWIORBEDHBIREL D T,

DLEDERD S, 52 6N S EHBOHRL TR WA FFECOSMZ2i TU Y Hiz—RICEE D) £
T, 29 THhVARS, EOBEBICH > TEAEZY->TH, TEZMHOWIOEMIZEL S RE0T, BT
DEICLTEARRDDL I ENTEET,

#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long 11;
int main()
{
int a, b, x, y;
scanf ("%d%d%d%d", &a, &b, &x, &y);
printf ("%1f %d\n", double(a)*double(b) / 2, x + x == ak&y + y == b);

© 0 N O O ks W N

=
(=)

—
—
[

D. Enough Arrays(writer : yuma000)

£ 0 B2 AP0 EAREFIZRL T, ZRZROXEIAN K MU L% 0o 5 HETIR, ON?) 2
BPoTLEVET (BREMEMGS 2 Lo, KIEANE O(1) TRED)., koT. bo LR ROEEE
ROGa0ERHH £7.,

Sy =YlA, LLrrs,

o S(a,b) < S(a,b+1)
e S(a,b) > S(a+1,b)

B H 7,
2FD, I

o ®H2LricNLT, Slr)>=K%61F, 2D a(z >=r) I LT, S(l,z) >=K TH 2%,

LWz Ed, 2F0, WO ZEE L EE, S(,r) >= K 27T X5 BRND r ZHOT 3
EDTENR, HAVN DL | ORI, SR TLOOMEBERD L L TEE T, (BARIZIE,
N—-r+17T79,)

BARPIC r Z 3Rk 20518 LTUE

o JUNDIE (O(N))
o ¥ (O(NlogN))

VBT ONLDT, ZOLL 6P THEETIUT L CTT (BARICIERIND B 5EHER D25 < HiED
BwEEIDT, BITTHTY),
DUFA, REUh o a—FTd,

1 #include<bits/stdc++.h>

2 using namespace std;

4 int main(){

5 int N;long long int K;
6 cin>>N>>K;

7 vector<long long int>A(N);
8 for(int i=0;i<N;++i){
9 cin>>A[i];

10 }

11 long long int answer=0;
12 long long int sum=0;

13

14 int r=0;

15 for(int 1=0;1<N;++1){
16

17 while (sum<K) {

18 if (r==N)break;

19 else{

20 sum+=A[r];
21 r++;

22 }

23 }

24 if (sum<K)break;

25 answer+=N-r+1;

26 sum-=A[1];

27 }

28 cout<<answer<<endl;

29 return O;

30 }

E: Common Subsequence

DIk ITNLT, Sy, =Tj,.08, =T, ER2EICHFOEAL<i <iy <..<ip <N
1< <jo< o< <MEBIAOKERDZMECTT, UFTRIDEGZHL SR T
W ZEEEZET, FT. FHAMELLTRO LI A dp BEZSNE T, dpli]fj] : S @ i LFHE
TET O jXFHETEEREL, 202 XFE2RTICT2LEOHGEOHETZLE, S, =T Th3
LE dplilj] = (L S dpK) 41, 2 TRVEE 0 L LTAMETE £ 928, Z 0BG
O(N2« M?) ©F, MERZWHICERT 2 &, 2 RERMMOEZ 2 MIET 2 2 LATE, O(NM) &
WETEET, BB, sumlil[j] = Sh_y Soi_, dp[K][l] EiET. sumli]j] = sumli-1][j] + sumli][j-
1] — suml[i-1][j-1] + dp[i][j] £ LTHEHHHL TV 2 EMBTEET,

F: Minimum Bounding Box

BT (Tmaz — Tmin) X (Ymaz — Ymin) % bounding box EFEEZ LIZL ET,

ROBEBRE. Tmee PELEIIED. AL, BHEHBELTCOEET (BFXER 0 ICENIZEEDHD
), BUEPEDL YA I 71k, BFEZAA L2 0B LETRO L 2 ENTEE T, Ak L
E Zomin ® Ymaz X Ymin TOHRDIZE FT,

COMWEZNMT 2 & ROBHFIHE ORI 2 2R KRAMED ZILRE I A ZE 2\ » DD XENC 3 ET
%79, %L THEIZ bounding box BERAMEZ £ 274 2V 71, 2D X9 BXEOHEOWTNLTT,

ZDZEtzRLET,

%9 de = Timaz — Tmins A = Ymaz — Ymin P EIICEDET, de BIY dy DIEHREFAMT 2 L5 &
X[clx, bounding box XML F3, X->TZ2D k) RXHETIE, KEHDMHHA T bounding box &
BAMEZ & D E9, FARRIC de 88X dy BIAERHEIRA T 2 &) 2 XKFETlE, XEO# THIA T bounding
box l3ix/IME%Z & D £7,

RN dx DIRERN dy DRBERADTH 256252 FT (FOBELFHKTT), TD L ED bounding
box DZEALEIL do & dy DHRICELAINE T, dz DY dy & HRT—EL /NI W bounding box 13
WML ET, de DHEMERT 2 L (HDVIERD»S) WHDOEETIDIZ) 25 < % 1 bounding box 1%
WAL ET, fEZD L) RXETIE bounding box DfEIZ EiC M i b, KENEAOWT I, TRAMEZ
EDET,

DEXD, Sl REIREE L,

ABC 130

satashun, DEGwer, yuma000, yosupo, gazelle
06/15/2019

A: Rounding

For this problem, implement the instructions in the problem statement. If
X < A, print 0. Otherwise, print 10. An implementation is below.

Listing 1: Rounding
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 int main() {
5 int X, A; cin >> X >> A;

6 puts(X < A 7 "O" : "10");
7 return O;
8}

B: Bounding

For this problem, we care about the location of the ball at each bounce. The
location of the ball at the first bounce is always 0. The location of the ball at
for subsequent bouce 7 is the location of the ball at the previous bounce plus
L[i], the length traveled from the previous bounce. This is the same thing
as taking prefix sums. Now that we know the location of all the bounces, we
can check each location and count the number of locations that are <= X.
The runtime is O(N).

Listing 2: Bounding
1 #include <bits/stdc++.h>
2 using namespace std;
3
4int main() {
5 int N, X; cin >> N >> X;
6 vector<int> D(N + 1);
7
8
9

D[0O] = O;
for (int i = 0; i < N; ++i) {
int x; cin >> x;
10 D[i + 1]
11}
12 int ans = O;
13 for (dnt i = 0; i <= N; ++i) {

D[i] + x;

14 if (D[i] <= X) {
15 ans++;

16 }

17}

18 cout << ans << endl;
19 return 0;

20 }

C: Rectangle Cutting

A rectangle can be cut into two equal parts by any line that passes through
the center of the rectangle. The points (z,y) and the center can form a line
that cuts through the rectangle, so it is always possible to cut the rectangle
exactly in half.

A line that doesn’t pass through the center of the rectangle cannot split
the rectangle in half. If (x,y) is the center of the rectangle, there are multiple
ways to cut the rectangle in half passing through (x,y) because any line
passing through the center works. If (x,y) is not the center, there is exacly
one way to cut the rectangle in half because there is exactly one line that
passes through both (x,y) and the center.

Listing 3: Rectangle Cutting

1 #include<stdio.h>

2 #include<vector>

3 #include<algorithm>

4 using namespace std;
5 typedef long long 11;
6 int main()

7{

8 int a, b, x, y;

9 scanf ("%d%d%kd%d", &a, &b, &x, &y);

10 printf ("%1f %d\n", double(a)*double(b) / 2, x + x == a
&&y + y == b);

11}

10

D. Enough Arrays (writer: yuma000)

If the sum of elements in the range form [to r is >= K, then the sum of
elements in the range from [to r 4+ 1 is also >= K because all the elements
are positive. This means that for each index [, if we can find the first index
r such that sum(a[l...r]) >= K, then we can add N — r + 1 to the answer.
N — r + 1 is the number of ranges that start with /. The ranges can end at
any location from r...N.

There are two ways to find the first value r such that the range sum(all...r]) >=
K for each 1.

The first way is binary search. First, we take the prefix sums of the array
A. With prefix sums, we can query the sum of a range in O(1). For every
starting index [, we can binary search to find r. The runtime for this method
is O(NlogN).

The second method is two pointers. This is the method shown in the code
below. If we know that 7 is the first index such that sum(a[l...r]) >= K (this
means sum(a[l+1...r]) < K), then the range from [+ 1 ro r — 1 will not work
(this means sum(a[l+1...r —1]) < K). The brute force solution is to try each
possible r for every [. This runs in O(N?). We can speed this up by only
trying a possible value of r if it is greater than or equal to the value of r for
the previous [. This speeds the runtime up to O(N) because we only check
each possible value of r once total while going through all possible values of
l.

Listing 4: Enough Arrays
1 #include<bits/stdc++.h>
2 using namespace std;

3
4 int main(){

5 int N;long long int K;

6 cin>>N>>K;

7 vector<long long int>A(N);
8 for(int i=0;i<N;++i){

9 cin>>A[i];

10 }

11 long long int answer=0;

12 long long int sum=0;

13

14 int r=0;

15 for(int 1=0;1<N;++1){
16

11

17
18
19
20
21
22
23
24
25
26
27
28
29

30 }

3

while (sum<K){
if (r==N)break;
else{
sum+=A[r] ;
r++;

}
+
if (sum<K)break;

answer+=N-r+1;
sum—=A[1];

cout<<answer<<endl;
return O;

12

E: Common Subsequence

Let dpli][j] be the number of ways to create subsequences only using the first
1 elements of S and the first j elements of 7" such that the subsequences
are the same and the ith element of S and the jth element of T" are part of
the subsequences. Basically, dp[i][j| is the answer to the problem if we only
consider the first 7 elements of S and the first j elements of T" and we have to
use the ith element of S and the jth element of 7. If S; |= Tj, then dp[i]j]
= 0 because no subsequence will end by using the ith element of S and the
jth element of T. If S; = T} then dpl[i][j] = (X oy Soiz; dp[K][l]) + 1 because
the previous index of S can be any index <= ¢ and the previous index of
T can be any index <= j. As a base case, we can say dp[0][0] = 1. This
represents the case were we don’t take any elements. The runtime of this
is O(N? x M?), but we can speed this up by precomputing the sums. Let
sumlil[j] = Sp_; S0, dp[K][l]. sumli][j] is a 2D prefix sum of the dp array.
suml[i][j] = sum/[i-1][j]+ sumli][j-1] — sum[i-1][j-1] +dpli][j]. With sumli][j], we
can know calculate each state, dpli][j], in O(1). Since there are NM states,
the runtime is O(NM).

13

F: Minimum Bounding Box

Let’s call (Zpmae — Tmin) X (Ymaz — Ymin) the bounding box. We want to
minimize the area of the bounding box.

Consider the value of x,,,, as the points start moving. x,,,, will decrease
for some amount of time (which may be 0), then it will stay the same for
some amount of time (which may be 0), and then it will increase for some
amount of time (which may be 0). We can binary search to determine when
Tmaz StoOps decreasing and starting staying the same and when x,,,, stops
staying the same and start increasing. We can repeat this process for z,,,,
Ymaz; and Ymin-

We care about the interval of time when the values (for example Z;4.)
stay the same because those will lead to the smallest bounding box. Consider
time as a number line and place the intervals when the values are the same on
the numberline. We have now divided the numberline into several sections.
For each endpoint of a section, let dx = 00 — Tmin, AY = Ymaz — Ymin- NoOte
that all 4 values may not be constant in every section.

In the sections where dx and dy are increasing, the bounding box will also
increasing. In the sections where dr and dy are decreasing, the bounding
box will also decrease. In both these cases, the area of the bounding box is
minimized at an endpoint of the section.

We now have to consider the sections where dx is decreasing and dy is
increasing. Consider the ratio that dx changes by and the ratio that dy
changes by. If the ratio that dzr decreases by is more than the ratio dy
increases by, then the area of the bounding box decreases. The area of the
bounding box is convex in these sections, so the minimum area will be at the
endpoint of one of these sections. We can symetrically consider the sections
where dx is increasing and dy is decreasing.

14

