ABC 136 fi##i

DEGwer, drafear, evima, satashun

2019 fF 8 H4 H

For International Readers: English editorial starts on page 7.

A: Transfer

B 1ICEHE A-B IVY Y PLVETANLIENTEET, koT, AR 2208 T KOR (2
Uy P IE A—B & C O/RIVHITAEDET, LEdo>T, &8 2 10585 /Kk0RIE C — min(A - B, O)
SYYy PLIZEDET, C++ SHETOHFEEFZDTITRLET,

#include <bits/stdc++.h>

[

2

3 using namespace std;

4

5 int main() {

6 int A, B, C; cin >> A >> B >> C;
7 int cap = A - B;

8 int use = min(C, cap);

9 int ans = C - use;

10 cout << ans;

1}

B: Uneven Numbers

(Ji%: DEGwer, #fiii - f#3i: evima)

NI 10 B TPEHEDREL L, 1,2,...,N) N HOBDOKE B A 5 DBETT,

ZL T, ZNZTNOBDONBEBAZ i b FEL TR, HELFINLEMLCZORIEZHAL LI b
DTL &9, mODNEWLRGETED Y FEAH, SHIEZNTHITT,

LUFIC Python 12 & 29254 % “SEL £ 3, hoSHETH I LRI X9 BFEITHETL £ 9,

1+ N = int(input())

2 ans = 0

3 for i in range(l, N + 1):

1 if len(str(i)) % 2 == 1:
5 ans += 1

6 print(ans)

1+ N = int(input())
2 print(len(list(filter(lambda x: len(str(x)) % 2 == 1, range(l, N + 1)))))

C: Build Stairs
EDRADSIRICHEZEZRZ LICT 3L, TEBZLRITEL LTEBWEADRBE OEIRENHZ 32 DT,

o ifH L TRVALMS LA
¢ ZH)THAT, ADTRENBBE LI ETHVAS 1{&S T3
e ZH)THWVARL EIHES>TH I XD TEZIX No

AP OISV, 9 MK TEIUL Yes 2T 2 2 T O(N) OFERRcEALERD S 2 LBTE
¥9, £/, FAKROEZEZ T, EPSIHIATI ZLEHTEET,

D HEEE L TIE, | HFHETOESORAMEEZ M; L LESIC, 2TD i =1,2,...,N IZ2WVT,
H; > M; — 1 23R D 32TIE Yes, 29 THIFIUEL No LHETZZEHTEEYT, Jdimkic k- Tx
TIENTEET,

FBRIC VWiH; > M; — 1< %213 Yesy 2R LTHET,

< IR, MMEEES &, RTREE (F3H, < M; — 1= %21 Noy 20T, ZHFHHTTE,

= 3RETRL £7,

e N=10DLEINHTEZIZ Yes TT,

e N =N4+1DEE REXY i = 1,2, N IZOWTEMEZMLTOT, WMEDIRE LD
Hi, Hs, ..., Hyo 12 5 (HIFERA T 28EOMLT) BHEL £, OO LFE L
T, Hi=My £%%i€{l,2,., N} IZDWT 1K T 28I ZERELTH Hy, Hy, ..., Hyo 1T
N BMHEZ>TVT, ZHUTMAT Hy I2oWTiId L@ %235 & Hy, Hy, ..., Hy IZXF$
LIEDRETE. Yes TY,

TH < Myj—1th2i%a L, Hj=M, %% j%2y ELET, T2, y<ax D Hy <Hy—2 B3RO LHET, D
FOHreALAHDOCRAT, HEP2U LB ABEET 2O TEIFEHE->THID 2 v AW T 2560:%0T 2 LT
TEXA,

D: Gathering Childrens

“RR...RLL..L” Oy d s &, oy EfTERTLILRBBVDOTHICEZ S LB TEET,
il Z1E, “RRLRL” 13 “RRL” & “RL” IZOWTHIICEZ 2 Z W TE Y, UK, “RR..RLL..L” OfF
DOV TDOAREZLET,

For BB %) 0T, BERES, Tabb “RL” O HEPEZ D | bW 12D 2w
REBIZZ D £7, X512, BUEDP SEBBEHD 2 AT L BREH DO < AW FHDBE U < R ICH
E52EIE%L, WIZEDS DMEOHANLE LV AW T 7B IR RKINICIEREFAIC > A ICEE D)
¥, BEhEiE 10100 8] & @A 20T, “RL” @ “R” 121 “R” o~ AN+ b0 E 0,
“RL” @ “L” IZ1Z “L” 2o\~ AN 7088 ED 7,

CDX)IEIHET 2 2 L TREGERR O(N) TEAZRDL I ENTEXT,

FHETIR, TP R L 2T T RT3 (Bl 21 “AABCCC” % (A%, 2), (‘B’, 1), (‘C7, 3) D &
IR T2) 7V Ly PAEMED 74 77) 03 % EHFTT,

ML LT, ROX I BELHD T, v ARIIE4 10° A 0T, 10° HIBE)I L 2% 0REZ KD 5
WEHTd, ZoREL 1010 RIBH L 2 BOREZ UL ET, £, £»6 i FHORRAZCR i L
L. dp(i,j) % "RAIw A jICETH i MoBHoBIcHs A, EERLET, T5&, dp(l,)) 13 S,
DL%ES j—1. R%5 j+1 T, 51, fLED 1,9, I22WT dp(iy +i,7) = dp(iz, dp(iy,) %D
T 7V 7LD dp(X,j) # O(NlogX) TAHHETEE T, X =10° oW TRDLLOT, T
HOET, Y7V EE, o™ & ol 2?2t 28 L RHAGDE GRS 2 (Bl 210 = 28 x 2?2 ERMEL
FT) MR L DEEEIGH L BT, SROEA7E dp(10,7) = dp(8,dp(2,7)) EFHELET, 22T,
dp(2"tL,) (& dp(2n,dp(2",5)) ERMEL £ 3. ZoFEEHVIUR, HlZIEREDY 10190 Mo EE R E
T K MOBEHBOREZRDZ LD TH-70), LR Lo BiliaBEI TR AIC Ry A (R; 2
BROLEIC —R; vA)BEIE Lo R EZ R RDL I ENTEET,

E: Max GCD

FTKFOBET AN LTED L) REBEENTEL»EZTHEL &I A1+dy, As+da, - Ay +dy
IZh3ELET,

CDEE, FRMETHDPEML R LIGERT 28, di+do+ - +dyv =0 THIREBH Y 7, %
7. dDIBLIEDSDOMN K LD RZVCEHAEH D ZEFEA, AIKOVTHHEETHH (F12° 0 OFRFIZH
BRIz SNETH), INoB T INZGEIEZD L) ICEETRTH 5 Z L 2MaMioRe £9,

BZ(dELET) DEMELTE, S=A1+ A0+ +Axy ELEE dD S DRETH 2 0ED D
NET, dZ S ONBETHTIERLTEELEL X9, TDEXI % d DEREE O(sqrt(N * mazx(A)))
fddh %9,

F9. Ay, Ay 2 d TEHISLRDE ri,rg, o ory ELELE I, 0 THZDHDIEEARL, THUINIWIE
Y —FSNTWVEELET, ZOLE, d ZIEICT 2 5DIZOWTUIRIK (d—r;) OFDEEDOEAEH LI
TY, d ZAICT 2 HDICOWTIERIE r; DMDBEBDOBREVPBETY, Z20Zh, d DEREIOERMEIZR
TIAT)I TEWTEET, LoTr DIV RSETETE d ZAICREL, ZI05RIEICES X)IC
T2HOAEEZEZNUZEL (r O d ODFEBTHL I EICHERBLEL X)), REMZEZHWTETOX
UINiD d IED S DDREDOMEAD S DDIHERD B Z LB TEET,

£ oT, d ZFEEL7-5EICE O(NlogN) Ty 20T, ZoREIE O(sqrt(N x maz(A)) * NlogN) T
il £ L7,

F: Enclosed Points

9, BTRVESEARIR 2N 1@ S E T, INSICOVTHEE f DEEZEAZDTIE AL, Fmp
EABICEEFNS L) REGPMED 202 FRICOVTRDE I EEZELET,

HBEHPICHEHLTWRELELEI, PEPDIC, P LD z,y EEOKNERIZ 4 Hadbh 355,
COZNZTNCHPFET 20 L)L) REBZIEETIUIZD P BRGBICEEFNEDE I »BIRES
WO ET, HAHEEIC K HoRRH 2 & LR, ZOMEBICHPEET 840 2K — 18D T,
HMOFEL VAT 1#D ©F, flZIETT2, MBZNZNCHET 208900 28 EhicowT, E
HIBIZ P WEEFNIHEFIIINGZ22TEOETRELTLIHELWTT, (P PEAICEEFNIDLE) I
DWTHEHETITVHBETT)

EoT BR (24,1:) KO2WT 2 < xi,y < Yin T<Tiy Y > Yin T > T3y < Yin T>Ti,y >y TNEN
DFIRIZ OV T ZNZNREET 208K EUL, BEA2RKOZIENTEET, TN ETHOMEER
1— N ML 72, RE o BEIZDOWTY =L, 2 D/PAI0HE25 EREWHD 6T 2 [1] segment tree
/ BIT (fenwick tree) ZH\WT& y ICHFET 2 HOMBZEHL T IFIE O(NlogN) TEHHETE X T,

DL ETZof#EIZ O(NlogN) T £ L7,

i 28

https://atcoder.jp/contests/abc136/submissions/6697878

ABC 136 Editorial

DEGwer, drafear, evima, satashun

August 4, 2019

A: Transfer

We can put at most A — B milliliters of water into Bottle 1. Therefore, the amount of water that we
will transfer from Bottle 2 would be the smaller of A — B and C/(milliliters). Therefore, the amount of
water that remains in Bottle 2 would be C' —min(A — B, C). The following is an implementation example

in C4++.

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int A, B, C; cin >> A >> B >> C;
7 int cap = A - B;

8 int use = min(C, cap);

9 int ans = C - use;

10 cout << ans;

1 }

B: Uneven Numbers

(Draft: DEGwer, Preparation and Editorial: evima)

N is not so large, no more than 100 thousands, so it is easy to count the digits of each of N numbers,
1,2,...,N.

And the most natural way to count the digits of each value would be converting the number into string
and count its length. It is not the fastest way, but it is enough for now.

The following two example is implementation examples in Python. You would be able to implement

in other languages in similar way.

N = int(input())

ans = 0

s for 1 in range(l, N + 1):

if len(str(i)) % 2 ==
ans += 1

print (ans)

N = int(input())
print(len(list(filter(lambda x: len(str(x)) % 2 == 1, range(l, N + 1)))))

C: Build Stairs

Suppose that you choose the operation from right to left; then you will have more choices if you make

them as high as possible, so by performing such operations that

e if you don’t have to do anything, do nothing
e otherwise, if it’s higher than the square by exactly one, decrease it by one

e otherwise, you cannot achieve it no matter what you do, so the answer is No

from left to right, and printing Yes if construction succeeded, the answer can be found in time complexity
of O(N). Similarly, you can perform it from left to right.

As another solution, let M; be the maximum of heights until i-th square, then it can be judged Yes if
H; > M; —1foralli=1,2,..., N, and No otherwise. This can be proved recursively.

Let’s prove that ”Vi.H; > M; — 1 < the answer is Yes”.

< is easy. Its contraposition is that ”3i.H; < M; — 1 = the answer is No”, so it’s obvious&.

Let’s prove = inductively.

e If N =1, the answer is always Yes.

e If N = N’ + 1, since the proposition is true for ¢ = 1,2,..., N’ there exist an solution (way of
operations to make it non-decreasing) for Hy, Hs, ..., Hy/. If you overwrite the solution so that
you chose to decrease the height by 1 of the square ¢ € {1,2,..., N'} such that H; = My, it is
still solution for Hi, Hs, ..., Hy/, and in addition, if you choose to do nothing for Hy, you can

construct a solution for Hq, Hs, ..., Hy, and it’s Yes.

*1 Take one i such that H; < M; — 1, and let y be such j that H; = M, holds. Then y < x and H, < Hy, — 2 holds.
Therefore, there exist a square that the height of some square left to it is at least two units lower than that of the

square, so there is no way to achieve the condition between those two squares.

D: Gathering Childrens

If you split it into parts of “RR...RLL...L”, the children do not cross the border, so each of them can
be considered independently. For example, “RRLRL” can be considered independently for each “RRL”
and “RL”. Hereafter, only the sequence like “RR...RLL...L” is considered.

Since there are enough times of movement, all the children gather into the border, that is, “RL”, and
nobody is in elsewhere. Moreover, a child who was initially in a square with even number of index and
a child initially in odd index do never gather into same square, and conversely, children in same parity
of squares all gather into the same square finally. There are even number, 10'%° times, of movements, so
children whose square’s initial index is distant from “R” of “RL” by even number of distance gather into
“R”, and children whose square’s initial index is distant from “L” of “RL” by even number of distance
gather into “L”.

This way, the answer can be found in time complexity O(N).

It will be useful for implementation if you can use run-length encoding library, which disassembles a
string into consecutive same characters (for example, disassembles “AABCCC” into a sequene like (‘A’,
2), (B, 1), (C", 3)).

There is another solution like the following. Since there are at most 10° squares, it is sufficient if the
state after 10° movements can be found. This states corresponds to the state after 10'°° movements.
Let square i be the i-th square counted from left, and dp(i,j) be ”the index of square where children
who was initially in square ¢ moves into after j movements.” Then, dp(1,j)is j—1if S; is L, and j+1 if
it’s R. Moreover, for any 41,42, j it holds that dp(i1 + i2,j) = dp(iz, dp(i1,J)), so by using doubling you
can find dp(X,j) in O(NlogX). You want to find the value of X = 105, so it’s sufficient. The doubling
is development of the fast exponentiation algorithm, which is finding 2™ combining x!, 22, 2% 2%, ... (for
example, in such way that 20 = 28 x 22), and this time, it is calculated like dp(10, j) = dp(8, dp(2, j)).
Here, dp(2"*1, j) is dp(2"™,dp(2",j)). By using this technique, you can also obtain the answer even if
the problem asks to find the state after X movements, or the movements are not as simple as L, R but

moving R; sqaures to the left (if R; is negative, move —R; squares to the right).

10

E: Max GCD

First, let’s think what kind of modification can be applied to A by performing K operation. Suppose
that it is changed into Ay + dy, As +ds,--- An + dn-

Since each operation does not change the sum of the array, dy +ds+- - -4+dx = 0 has to be 0. Moreover,
the sum of positive elements of d cannot be more than K. So does that of negative elements (if the sum
is 0, it is automatically fulfilled, though), and it can be proved inductively that if all of these conditions
holds, the operations can be performed in such way.

Let S = Ay + Ay + --- + Ay, then the candidate of answer (let’s denote it as d) should be divisor of
S. Let’s fix some d among the divisor of S. There are O(sqrt(N = maz(A))) candidates of such d.

First, let 71,72, --rn be the remainder of Ay, - Ay divided by d. Suppose that there aren’t 0 in it,
and they are sorted in increasing order. Then, for the element such that d is positive, the number of
operations that shuold be performed is at least sum of (d — r;), and for the element of negative, it’s at
least sum of r;. Therefore, it is optimal that d is set to negative value for the former part of r until
certain element, and set to positive for the rest (note that the sum of is multiple of d), and you can try
all the borders and calculate the sum of positive elements of d and that of negative elements by using
cumulative sum.

Therefore, when d is fixed it can be solved in O(NlogN), so this problem can be solved in O(sqrt(N =
max(A)) * NlogN).

11

F: Enclosed Points

First, there are 2 — 1 non-empty subsets. Instead of counting the value of f for each of them, for
each point, let’s count how many sets there are such that the point is contained in rectangles.

Let’s focus on a point P. Depending on the comparison of the x- and y- coordinates with those of
P, the coordinate system is divided into four regions, and if the presence of points in each region is
determined, it can also be determined whether this P is contained in the rectangle or not. When a
region contains K points, there are 2% — 1 subsets of those points such that there exists at least one
point in the region, and 1 set such that none of them are in it. For instance, for each of 2* combinations
of existence of each region, you can calculate the product of them if the rectangle contains P and sum
them up. (You also have to check if P is included in the set)

Therefore, you can find the answer if you can count the number of points in each region = < x;,y < v;,
x < Ty > Y, x> x,y <y and x > x;,y > y; for each point (z;,y;). You can achieve this in
O(NlogN) by compressing the coordinates into 1 — N, sorting the points by z-coordinate, and managing
the number of points by their y-coordinates using segment tree / BIT (fenwick tree) twice, in its increasing
and decreasing order.

So this problem can be solved in O(NlogN).

Link to sample code

12

https://atcoder.jp/contests/abc136/submissions/6697878

