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B: Colorful Creatures
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D: Half Reflector
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E: Increasing Numbers
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F: Train Service Planning
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A: Airport Bus

Suppose that b people take bus B and b people take bus B’. If some passenger on bus B’ arrives at the airport
after some passenger on bus B, we can assume that all passengers on bus B’ arrive at the airport after all passengers
on bus B. (Otherwise, among those b + b’ people, we can assign the first b people to bus B and the last b’ people to
bus B’).

Therefore, we should repeat the following: ”Choose the first person who haven’t taken bus yet, create a new bus,
put the person to the new bus, and assign the largest possible number of people to the new bus (in the increasing
order of arriving time)”.

First, sort the people by T;, and assign people to buses from left to right. Let ¢ be the smallest index that is not
assigned to a bus yet. Then, we should find the maximum j such that 7; —7T; < K and j — 741 < C, and assign
them to the bus. (The next ¢ will be j + 1). We can get the answer by repeating this process. This solution works in
O(NlogN).



B: Colorful Creatures

Suppose that 47 < Ay < --- < Apn. Let t be the largest integer k such that 22?21 A; < Agy1. (If such k doesn’t
exist, t = 0.) We claim that the last color will be one of ¢t +1,..., N.

If one of 1,2,...,¢t wants to survive, its size must be at least At;l (and the eats ¢t + 1). However, even if all of
1,2,...,t merges, its size doesn’t reach A”Q“ . On the other hand, each of t + 1,t + 2,..., N can survive by eating in

the increasing order of size.

Thus, we should compute such ¢ and the answer is N — ¢.



C: Squared Graph

In general, consider the following problem:

You are given two graphs A = (V4, E4), B = (Vp, Ep). Define a graph C: the set of vertices are V4 x Vp
and there is an edge between (a,b), (a/,’) iff there is an edge between a,a’ in A and there is an edge

between b,0’ in B. Compute the number of connected components in C.

(The original problem corresponds to the case A = B).

First, suppose that both A and B are connected.

If |V4| = 1, the answer is obviously |Vp|. Similarly, if |Vp| = 1, the answer is obviously |Vy4|.

Otherwise, each graph contains at least two vertices. There is an edge between (a,b), (a’,b’) in C' iff there is a path
of legnth [ between a,a’ in A and there is a path of legnth [ between b, b’ in B for some integer [. Since we can easily
extend the length of paths by two, we are only interested in parities.

If both A and B are bipartite, there will be two connected components in C. (If V4 are divided into Sa,Ta
and Vp are divided into Sp,Tp in bipartite coloring, the two connected components are S4 X Sp UT4 X T and
SaxTpUTxs x Sp).

Otherwise, C' will be connected because we can always find a path with given parity between two vertices of non-
bipartite graph.

When A, B are not connected, we can solve the problem for each pair of connected components and compute the
sum. Let N4, N be the number of vertices, i4,ip be the number of isolated vertices, ps,pp be the number of
non-bipartite components, g4, ¢p be the number of bipartite components (except for isolated vertices). Then, the
answer is:

(taip +1a(Np —iB) +iB(Na —ia)) + DaPB + PadB + qaPB + 294qB

This solution works in O(M).



D: Half Reflector

First, let’s see what happens when the operation is performed only once. If the leftmost device is in state A, the
state of this device will be B after the operation and nothing else happens. If the leftmost device is in state B, the ball
first changes the state of the leftmost device to A and then enters the second device from the left side.

See the following picture (the left picture shows the case where the second device is in A, the left picture shows the

case where the second device is in B):

O O

O

B A —

From this, you see that the state of the first device after the operation is the negation of the state of the second
device before the operation. Then, the ball will enter the third device and similar changes will happen. Finally, the
ball leaves the contraption from the right side of the device N, and the state of this device always end with A.

Here is the summary:
o If the leftmost device is in state A, it will change into B and the other devices won’t change.

e If the leftmost device is in state B, the states of devices 1,2,..., N — 1 after the operation is the negation of the

states of devices 2,3, ..., N after the operation, respectively. The state of the device N is always A.

In the latter case, we can see the operation as ”"delete the first character, negate all characters, and append A at
the end”. If we negate all characters at even indices beforehand, the only operations we need to do is ”delete the first
character and append a character A or B (depending on the parity of N)”. This can be done in O(1) using a deque.

This way the problem can be solved in O(K). Also, notice that after 2N operations, the strings we get after each
operation will be periodic, and the period is at most 2. Thus, we need only O(N) simulations and this algorithm
works in O(N).



E: Increasing Numbers

An integer is called Repunit if it only consists of ones in its decimal representation. For example, 1,11,111,... are
Repunit.

It is easy to see that an integer is increasing if and only if the integer can be represented as the sum of at most 9
Repunit numbers. Thus, an integer N can be written as the sum of at most k increasing numbers if and only if N can
be written as the sum of at most 9% Repunit numbers.

A Repunit number can be written of the form (10" — 1)/9 using a non-negative integer r. Suppose that

9k
N=> (10" -1)/9

This is equivalent to

9%k
ON + 9k = > 10"
i=1
In order to check if such rq,...,7r9x exist, we need to check if the sum of digits of the decimal representation of

9N + 9k is at most 9k.

Let L be the number of digits of N. We can prove that the answer of the problem is at most L (always choose the
greatest integer of the form 99...9,199...9,...,999...9 greedily and subtract it from N). Thus, by using binary
search, this problem can be solved in O(Llog L).

It is also possible to solve this problem in O(L). Instead of using binary search, compute the decimal representations
of 9N, 9N + 9, 9N + 18, ... one by one. The time complexity of one addition can be O(L), but since the big carries
will not happen after a big carry, its amortized complexity is O(L).

We need big integers, but the required operations are extremely simple: we only need to increment big integers.



F: Train Service Planning
Consider a train that goes from station 0 to station V. For this train, define pg,...,py—1 as follows:
e The train departs station 0 at time pg.
e After Ay minutes, it arrives at station 1.
e The train waits for p; minutes there.
e After A; minutes, it arrives at statopn 2.

e The train waits for p, minutes there, and so on.

Of course, p1,...,pny—1 must be non-negative.
Then, consider a train that goes from station N to station 0 in a strange way. We assume that this train goes from

station 0 to station N, but spends negative amount of time. Define qq, ..., qn_1 as follows:

e The train departs station 0 at time —qq.

After — A minutes, it arrives at station 1.

e The train waits for —g; minutes there.

After —A; minutes, it arrives at statopn 2.

e The train waits for —go minutes there, and so on.

Again, q1,...,qNy—_1 must be non-negative.

What happens if the section s is single-tracked?

e One train leaves station s — 1 at time Ag + ... + As_1 +po + ... + ps_1 and arrives at station s at time
Ao+ ...+ As+po+...+Ds—1-

e The other train ”leaves” station s — 1 at time —(Ag+ ...+ As—1) — (g0 + ... + ¢s—1) and "arrives” at station s
at time —(Ap+ ...+ As) — (g + ... + gs—1)-

The constraint on this single-tracked section is as follows: The value pg + ...+ ps—1 +qo + ...+ ¢s_1 is not in the
(open) interval (—2(Ag + ...+ As),—2(Ag + ... + As_1), modulo K. Formally, no number in this open interval is
equivalent to pg + ...+ ps—1 + qo + ... + gs—1 modulo M. Note that when 2A; is greater than K, this constraint is
unsatisfiable and you need to output -1.

Intuitively, the constraint only depends on the total waiting time in the stations [0, s) (of two trains). Let x; =
po+ ...+ ps—1+q+-...+qgs—1 (i-e., the total waiting time). The problem asks to find the minimum possible value
of xn_1 — z¢ of non-decreasing sequence xy, ..., xy_1 under the constraints above.

Now, we can state a simpler general version of this problem: (Note that after the reduction this N corresponds to
the number of single-tracked sections.)

You are given a modulo M and N intervals [L;, R;]. You are asked to find a non-decreasing sequence zg < 1 <
... < xn_1 that minimizes the value xy_1 —x, under the constraint that for each ¢, 2; must be in the interval [L;, R;],
modulo M. (Formally, there must be L; < y; < R; such that y; = x; (mod M).

The easier understanding of this problem is as follows. Suppose that someone is standing on a number line. He can
move to the right at arbitrary speed (or he can stay at the same place), but he is not allowed to go left. At time i, he

must be in the interval [L;, R;], modulo M. What is the minimum distance he must travel?



Now, it is easy to prove that we are only interested in ”important coordinates” Lg,...,Ly_1,Rg,...,Ry_1. We
can assume that in one of optimal solutions all z; are one of these values. Any reasonable DP that uses this fact will
run in polynomial time and get 500 points.

How can we solve this problem faster? First we define values dpL[i], dpR[i]. dpL[i] means the following: ”Suppose
that you are at L; at time ¢. What is the minimum distance you have to travel in the future (to satisfy the constraints)?
Define dpR]i] similarly.

Unless you are forced to do so, it makes no sense to move. Instead, you can move to the right later when you are
forced. Thus, we can compute the value of dpL[i] in the following way. First, find minimum j such that j > ¢ and
L[i] is not in the interval [L[j], R[j]] modulo M. (If such j doesn’t exist, dpL[i] = 0. Then, dpL[i] = (the distance
you have to move from L[i] to L[j]) + dpL[j]. The computation of dpR is similar. If you compute these values in the
decreasing order of i, and if you use RMQ (Range Minimum Query) to find such j, it works in O(NlogN).

How to get the answer? The optimal solution will look like one of the following:

e Stay at L; until time 4, and then move dpL[i] in total. This is valid only when L; is in the interval [L;, R; for
each j < 1.

e Stay at R; until time 4, and then move dpR][i] in total. This is valid only when R; is in the interval [L;, R; for
each j < 1.

Thus, there are only 2N possibilities. We can check the validity of each of these possibilty in O(NlogN), again
using RMQ. Therefore, this solution works in O(NlogN).



