Atcoder Grand Contest 013 O O

writer : maroonrk

2017040 170

For International Readers: English editorial starts from page 5.

A : Sorted Arrays

A0 A 000000000000 O0O0O00O0OO0O0O00O0OO0O0O0OO0O0O0A,D As0O00O0OOO
A0 A,0000000000000000O00OO00O0UO0OODOOODA;0 A,00000000000OO
000000000000 00D000000A,D As00D0000000DO00A,,A,,As000000000
0000000000000 000A,0 A30000000000000A,,4A,,As00000000000
000000000000 ooo0A; 0 A0000000D0O0O000DA,0 As00000O0D0DOOOOO
gobooooooobooooooOooOoOoOOoOoOobOOo0oOobOOoOoOoboOoOoOoOoOOoOoOOOoOoOoDbboOonon
000 O(N)ODOOUO0ODO
gobbooobooooboooooooo

B : Hamiltonish Path

cooooooboobooooboooooOooOoOoooOoboOoOoboOoOoOoOoOoOoOoOoOboOobOobOoOoOoOobOOoOoOoOoDnn
goboooooooooooooboooobooooboooooooooOooooobDooooDoDoOooDboboooon
gobooooboooobooooOooOoocOooOOo0oOobOOo0oOobOOoOoOoboOoOoOoOoOOoOoOOOoOoOoDboboOonon
goboooobooooooooobooooobooobooobooooooooooOoooobOoOooboboooon
ooooooooo0ooooo0oO0ooooOo0o0oooO0o0oooO0o0ooOoO000 N—-100000000
gboobooboooocoocooooobOOoboboobooOoboOooobOobObooboOobOobOobooOoOoboOoDbOon
goooooooooo 1ooboobooobbo0oooooooooooobDooobOoobOOoobDOoooDoooD
oooooooooooooooOoooOoooOoOoooOboO00 10oo00o0ooO0o00o0oooOooo0OoooDoOoboOooaon
ON+M)OODDODOODOODODODODODODOODOOOO

C : Ants on a Circle

ooobooooooooboooooo

NOOOOOOOoOoOooooOoOo 100 NOOOOODOOOOOOOOOOOoOoOOOOoOoDoOOoOoooo
gooopooooooooooOoooooooooogoooooooogoopDooooooTrooo
gobbooobooooboooooooo

o0o0o0ooooO00ol1oo0o000o02000000.NOODOOOOoOoOOOOOooOoOOOOooDoOOOO
oooooooboooooooooooooooobobooobobooooooooooboOooobOoooOOooDO 1000
0000000000000 00000000 1000000000000 TO0O0O0DOODOOOOOO)
ogooooooooOoOoOobobOOb0O000100000000000000T0000000000000O00
ooooo(N)0OoO0OO0oO0oO0OO0O0oO0ooOO0O00O0O0DO0DO00OO0O0 100000 D0DLOUoOoDooO T
ooooooooOooOoOoOoOoOoOoOoOOoOoOOoOOoOOTOoOoOoOoOoOoOoOoOoOooooooooooooo
gooOooOoOoOoOoOOOOTOOOO0O0O00O00O00000000000TooOoooooOoooooog
Oo0000T7T000
oooooooooooooooooooooonD 4,2,.NOQOQOOOOOooOOoOoooooooooooo
gooooboooooooooobobobobooooooboooooobooOoOoobOOoO0OoOobOOoboOobOOoOoOooDOboOn
000000000000000000000000O0000000O0O(NlogN)OODOOOODOOODOO

D : Piling Up

0000000000 X00O0OO0O0O0000000000000000 ADOOOO00O0O N—AQ
00000000XO00D000000000000 ADDDOOOOO0OD00D00000000 ADOOD
0000 N-ADD0O0OO0DDOOO0 XOOOOOOO0O0O000000000 000000000000
00000000D000000A=A-10000 X0000O0O0O0O0000000000000000
000
000
00000000000000000000DPOOODOODOODOO

DPJi|[j]k)=i000000000000000 j0000000000000000000000000
00000 (k=0-00)k=1-00)000000

00 DPOODO00ODP0)[0][1] = 1, DP[0][1][0] = 1, DP[0][2][0] = 1,...DP[0][N][0] =1 000000
00000000000000 DP[M]0][1]+ DP[M][1][1]+..DP[M][N][1]00000000 DPOODO
0 0(1)0000000000 O(NM)00000000000000000

E : Placing Squares

oooboooooboobobooobooooooboooobooooobooa

00 NOODODOOODODOOOOOOOOOOOO00oo0O00oo0o00oo000ooooooooo
coobooooobooooooooooOoooOobOoOoboOooOoOobooOoOoOoOoOOoOoOoOboOoOoDbOoOooobooOOn
0000000000000 000D0O0000DO0000D0O0000D00DO0O0O0D 5 000)000
coobobooobooooOoooOooOoOoOobOOoO0OoOOoOoOoOoOoOoOoOoOOoOO0OOOoOODbOOOObOoOOn
oooobooooooooon

cobooooobobooobooooOoooOooOoboOoobooOo0oOoOooOoOoOoOoOoO0OobOOoO0OoOooOoOoOooonn
ooooooooooooooooOooOoOoooooooooooooooo bPOoooooo

DP[i[j]]=00000000¢000000000000000DO0ODOODOOOOOOOOODOOD
oooooooooooooo jooooooOOODOO

00DPOOODOOODOOODODOOOODOOD O(1)DODOODOODON)DDODODDDOOODDDOOO

ooobPOOODOOOOOOOOOOOO 3x300000000000O0O0O0OOOOODOOODOOODOO
000000000 DPOOODO O(logN)OODODODOODODOODODDOOO O(MlogN)DDOODOOOD
gooo

F : Two Faced Cards

00 C;0000000000000000000B;=min(4;,B,)00000000000000000
000

ans, =C,00000000000 X000OO0O0OOOOD0O0O0O00000000
0100N+100000000+00000000000000000000000000000000
0000000ans, 0000000000000
0000000000000000000000000000000entli]=C,0000000000 Z0O
00000 -i00000ent00000000000000000000D000000000O0000000
0ent00000000000000000ent000000000000000000000000000
O00000entfi) =—i00000000000000 i(1<i<N)OD0O0OGent][A], ent[Ai+1], ...ent[N+1]
00000 1000000000000000 X00000000000000000000000000
0000000000000000

001v<i<N+100000i00000cntl]000 10000000000000000000
002B;<C;<A;00000i00000¢ntli]0001000MX0000 ;000000000
0ooo

000000 2000000000 ent000000000000002000000000000000
0000000000000000000000
0000000000000000000000000000000000000S0000000000
00 7000000000000 k001,2,.N+1000000000000000000< centfk]000
00 kO0DDD0O0O0O0O0DD00AOODODODOD SO0 TO000ent[k]<00000007000000
00000000000000000000000000000000¢nt(k]<0000000000000
00000000000000000000
TOOODO0DO0O0O000000000000000000000000000000000000000
000000000000000000000000000000 O(NlogN)DOOOOOv000000
00000000000
v00000000000000000000000v00000000200000000000000
000 0000000
000+000000000000000000000000200000000000000000000
000000000000000000000000000000000000 »000000UO000000
00000000000000000000000000000000¢cnti]<0,i<v0000i0000
00000+ 00000000000000000000000000000000

00000 =00000 7000000000 k00

000000000ent[i) <000 :0000000000v00000000000000000000
000000000 UO0O0000 WOOOOOOOO0 U00000000000000000000000
WOoOoOO0000000+000000000000000000000000000

coooooooboooooOoocOooboOoOoOoobOOoOooOoOOoOoOobOO0ybOOCO0ObOOOOoOoDboOn
0000000 0000000000000 000O00O0DOOODOO0ODOOO0ODN O(NlogN)DOOD
goboooboocoobooooboooo

Atcoder Grand Contest 013 Editorial

writer : maroonrk

201744 H 15 H

A : Sorted Arrays

Suppose that Ay, As, ..., A; is an (either non-increasing or non-decreasing) monotonous sequence. In
this case, for each j < 1, it never makes sense to cut the sequence between A; and A; ;. For example, in
some solution, if the first two subarrays are Aq,..., A; and Aj4q,..., Ag (k > 9), you can change them
to Ay,...,A; and A;41, ..., Ar without making the solution worse.

Therefore, you can repeat the following: find the longest monotonous prefix from the sequence, delete
it, again find the longest monotonous prefix from the remaining sequence, delete it, and so on.

Note that you should carefully handle equal numbers when you check whether a sequence is
monotonous. First you should check whether there are two adjacent terms x,y such that x < y, and
also check whether there are two adjacent terms x,y such that x > y. When both of these are found,
the sequence is not monotonous.

This solution works in O(N).

B : Hamiltonish Path

First, consider an arbitrary path. Check if this path satisfies the conditions. If yes, we are done.
Otherwise, we can find a vertex that is adjacent to one of the endpoints of the path. We can extend the
path using this vertex and we get a longer path. We repeat this process, and this process finishes after
at most N — 1 steps since the length of any path is at most N — 1.

For example, we can implement this idea as follows:

1. Create a deque with single vertex: {1}.
2. Let = be the first element of the deque, and y be the last element of the deque. Repeat the
following:
(a) For each vertex z that is adjacent to z, check if z is contained in the path. If not, append it
to the beginning of the deque and go to step 2.
(b) For each vertex z that is adjacent to y, check if z is contained in the path. If not, append it
to the end of the deque and go to step 2.

3. End the process. We found a solution.

In step 2(a) and step 2(b), each vertex is processed at most once. Therefore, this solution works in

O(M).

C : Ants on a Circle

We will restate the problem as follows:

Let’s assign a card to each ant. Initially, the ant 7 has a card labelled with i. When two ants meet,
instead of changing their directions, they swap their cards (and their directions won’t be changed). After
T seconds, we want to know the positions of each card.

Now, since the ants don’t change directions, we can easily compute the positions of ants after T' seconds.

The main difficulty is to find the correspondence between ants and cards.

e The relative positions of the cards never changes. That is, the cards 1,2,..., N are aligned
clockwise in this order.

e We can determine the card assigned to ant 1 after T seconds in the following way. If this ant
is moving clockwise, each time it meets with another ant, the number on the card assigned to
this ant increases by 1. Similarly, if this ant is moving counter-clockwise, each time the number
decreases by 1. Thus, we can determine the number by counting the total number of meetings

with other ants (which can be done in O(N)).

If we combine the two observations above, we can get the correspondence between ants and cards.

This solution works in O(NlogN).

D : Piling Up

Suppose that the box currently contains x red bricks and N — z blue bricks. You will perform M

operations from now, and each operation is one of the following four types:

e Operation 'RR’: Take a red brick from the box, put a red brick and a blue brick into the box, and
take a red brick from the box. This is possible only when z > 0, and = decreases by 1 after the
operation.

e Operation 'RB’: Take a red brick from the box, put a red brick and a blue brick into the box, and
take a blue brick from the box. This is possible only when x > 0, and x remains unchanged after
the operation.

e Operation 'BR’: Take a blue brick from the box, put a red brick and a blue brick into the box,
and take a red brick from the box. This is possible only when x < N, and x remains unchanged
after the operation.

e Operation 'BB’: Take a blue brick from the box, put a red brick and a blue brick into the box,
and take a blue brick from the box. This is possible only when z < N, and z increases by 1 after

the operation.

The problem asks the number of possible sequences of these operations.

Now, it is natural to define dp[i][j]: the number of possible sequences of the first ¢ operations that end
with j red bricks after the operations. The problem is that, we may count the same sequence multiple
times this way.

For example, the following two sequences should not be distinguished because they have the same

sequence of operations:

e Start with one red brick, perform an '"RR’ operation, and end with two red bricks.

e Start with two red bricks, perform an 'RR’ operation, and end with three red bricks.

In order to avoid double-countings, we add another restriction: you must perform at least one special
operation. We call an operation ”special” if it has the smallest possible value of x when the operation is
performed. That is, a '/RR’ or 'TRB’ operation when z = 0, or a ‘BB’ or 'BR’ operation when z = 1. It
is easy to see that any sequence of operations has exactly one way to perform with at least one special
operation.

Now, define dp[i][j][k] as the number of possible sequences of the first i operations that end with j red
bricks after the operations, and additionally k is a boolean value that shows whether we have performed

special operations. This solution works in O(NM).

E : Placing Squares

The key observation in this problem is to rephrase the statement in a combinatorial way. For example,
when we put k squares of sizes aq,...,ax from left to right (in a valid way), we want to count this
configuration afa3...a}; times. How can we do that?

It turns out that the problem is equivalent to the following:

~

There are N cells. Some of the borders between two adjacent cells may be marked. How many ways

are there to put some separators and red/blue balls such that:

e There must be a separator at the left border of the leftmost cell and the right border of the
rightmost cell.

e You may put separators between two adjacent cells that are not marked.

e You may put balls into cells (a cell may contain both red and blue balls).

e Between each pair of adjacent separators, there must be exactly one red ball and exactly one

blue ball.
_ J

The relation between this problem and the original problem is clear: the separators correspond to

squares, and balls are added to add the factor of a%a3...ad;.

Now the problem suddenly becomes very easy!

Define dp|x][k] as the number of ways to determine the placement of separators and balls to the first
x cells such that currently we put k balls after the last separator. This solution works in O(N), and
it is straightforward to improve this solution using matrix exponentiation. The solution with matrix

exponentiation works in O(MlogN).

F : Two Faced Cards

This problem is very challenging, and this is the main reason of the extended contest duration. Before
tackling the original problem, let’s prepare several things.

First, without loss of generality, we can assume that C' = {0,1,..., N}. We should first sort the given
C, and change the smallest number to 0, the second smallest number to 1, and so on. We should also
change the values of A;, B;, D;, E; accordingly to preserve the relative relation between these numbers
and C;. More specifically, when C;_1 < z < C};, the number x should be converted into 7 — 1.

Next, suppose that we have two arrays py,po, ... and g1, ¢, ... (here each element is up to N). How
can we check if we can permute the elements in p, ¢ such that p; < ¢; is satisfied for each i? One obvious
solution is to sort each of them. However, in this solution, we use the following.

Consider an array of integers that is initially filled with zeroes. For each p;, we add 1 to the interval
[pi, N]. For each ¢;, we add —1 to the interval [g;, N]. The condition is satisfied if and only if the array
obtained this way consists of non-negative integers.

Now, let’s return to the original problem. First, we create an array with zeroes, and for each ¢ from 0
to N, add —1 to the interval [i, N]. This corresponds to the cards in deck Y. Then, for each i, we add
1 to the interval [a;, N]. This corresponds to the cards in deck Z when we use front sides of all cards,
except for the single added card.

This array may still contain negative numbers. We want to change all elements of this array to

non-negative numbers by the following operations:

e Flip some cards in deck Z. This makes sense only when b; < a;, and it adds 1 to the interval
[bi7 ai) .
e Add a single card (depending on the query). It adds 1 to the interval [z, N] for some integer z.

And our objective is to minimize the number of operations of the first type.

How can we handle queries? Suppose that the given query is (d,e). We consider two cases indepen-
dently: whether we use the front side (d) or the back side (e) of the given card. Thus, in the problem
above, it is sufficient if we can compute the minimum number of operations of the first type for each x
from 0 to N.

Let’s summarize what we have to do from now. (Note that the variable names in the problem below

has nothing to do with the original problem, but the correspondence should be clear.)

-~

You are given an array of integers ay, . .. ,ay_1. This array may contain positive or negative numbers.

You are also given a (multi)set of intervals [L;, R;). In one operation, you can choose one of the
intervals and add 1 to all elements of the array corresponding to this interval. Each interval can be

used at most once. For each z between 0 and N — 1, solve the following problem:

e How many operations are required to convert the array such that ag > 0,a; > 0,...,a, >

Oaax-‘rl > _la"'va'N—l > -17

N J

In the remaining part of this editorial, we will describe how to solve this problem.

First, find the rightmost element in the array that is smaller than —1. Regardless of the value of x, we
must choose at least one of the intervals that contain this element. Among them, consider the interval
whose left end is the leftmost (let’s call it T). We will claim that, regardless of the value of x, we should
use this interval.

Proof. Let p be the rightmost position such that a, < —1. Let ¢; be the distance from the current
value of the i-th element to the target value of this element. For example, if this element is currently —4
and this element must be at least —1 after choosing some intervals, the distance is defined as 3. Now,
regardless of the value of z, it is easy to see that ¢, > 0 and for each ¢ > p, ¢, > ¢, is satisfied. In
the optimal solution, there are at least c, chosen intervals that contain the position p. Among them,
consider the one with the smallest right end. It does no harm even if we change this interval to I. Thus,
we can assume that we always use the interval I.

Now, we can greedily repeat this process. Traverse the elements of the array from right to left. When
we find an element that is smaller than —1, we find an unused interval that contains this element and
use it. In case there are multiple such intervals, choose the one with the smallest left end. This way, we
get an array whose elements are at least —1 in all positions.

In the remaining part, it’s easier to find a correct strategy. Since each element is now at least —1, we
are now only interested in the leftmost occurrence of —1. Thus, we can repeat the following process.
This time, traverse the elements of the array from left to right. When we find an element that is smaller
than 0, we find an unused interval that contains this element and use it. In case there are multiple such
intervals, choose the one with the largest right end.

Finally, we solved the problem. This solution works in O(NlogN) (we need priority queues to simulate

the solution above).

