AGC 022 Editorial (Japanese)

zscoder

2018 %4 H1H

For International Readers: English editorial starts on page 10.

A. Diverse Word

S DEIN 26 KDL E, FFHIETROSE 2 LFINE, S ICELHNTOLEWHFTRS /NI WFEE S
DBEAIHTRLEZDDTT,

ZIH)THVEA, S DEXIE 26 T, S =pipops..pes & LT, pibig1...p26 % S DERBETH > TLF
DD SHICEIHIEA TS (Thbb, i <j<25 LT p; >pjp TH2) LI AHLODI) LIRE
DHLDLELET, i=1DLE, SEFHFHETRODRKEVEGELRHETH IO, Z21E -1 TT, 29Tk
FIUE, iy Dig1s s D26 PRI B pim] EORZVEDDOHTTRG/NSWLTE ¢ £ LT, FEEIETROS %%
XFHNE p1pa..pi—aq EHEDET, (ZDEI)BXFREBIHFELET, B¥AES, Z2ITRVERETS &
Dic1 > pi o THERHOREEICFIET 2056 TT,)



B. GCD Sequence

ET. FEEK q; LR OEROMORAAKE (IT ged) 2FA5bhIc, FHEFE a; LITRTOEHE
DA S D ged ZHEZTHMOEL A, ged(a;, S — a;) = ged(a;, S) THH72OTT,

K, HRIPEO e v F 2L EATUE L, ZOBLVEYIZ, 126 N $TOHDH L 2/3 L
ZIBRSNEDH 52 EKRL T,

TATTOEREEITIE, S 25 0D/NS OEROBERE TR, a; 2BEDBZDNIWEETEID Y, v
DZENHD ged 1 THIUT LS BB, LWIHIDBDTT, 206, k 260D ELELTS=0k 7
DEPEVLCET, T5&, a; BPTId 2203 DFEUTH-T, ZNHTRTD ged 1 ERDEIHIC
BRI W LR ET,

BARIZH, 15 N $TOEDI S 2/3 FEN 25 3 THOUNET (0F D, 6k+2,6k+3,6k+4,6k
DI NHPDIBERDOETT), 61T, 2 & 3 ZMTERE, EALEED ged 3BT 1 4D FT,

INTIRERITEL, HEIZ. N PN E W —2ZNIL T, S DREFEIC 6 DEHRICR S X)) iIcTnud
XwTd, N<5DEEIE, 202N {2,5,63},{2,5,20,63},{2,5,20,30,63} ZENFLTT (fhic b g
BHVET, . ZOILBRHADDBEE IS I NICH Y ELE), D N>6 EIRELET,

6k + 2,6k + 3,6k + 4,6k + 6 DIEROEZ /NI VIHIGEATHEEZL £ 9, M—DREIZ, 26 145
ROPHLNBRWI ETT, flE 6 THl-o7AD10,2,3,0 DRITNNICTRDE I EDRESGITOLILIDT, Z
NSDr =2 %ML L X 9,

S6 THIING L ML TIHEIHD FHA,

e S=2 (mod 6) DL E: 8 ZHEADGHIRL T, XD 6 OFEZEMTIUTLVTT,

e S=3 (mod 6) DEE: 9 ZHEALSHIRL T, XD 6 OfFZBMTIUT LT,

e S=5 (mod6) D& E: 9 ZHEAEDLLHIRL T, XD 6k +4 DR ZEMT T L TT,

SOVHMEMOIPVET . N =3 0LER YT NVICHEMBEHECET, N BVHEED L ZIF
2,10,3,9,4,8,6,12,... (RO 8fAIZZnsicznFn 12 2L L2bo, TR DIEIGEMNTIZ X,
N DEHD L %13 6,2,10,3,9,4,8,12,... (XD 8fizznsiczhnzFin 12 2L Ldb0, UTHE) DIE
WEMT U X W,



C. Remainder Game

FT. ZNFNOHE v ITH LT, 208 2 THZEBRMEZEH L6, ZhDEZ 0% y > o THZ#
EZMEM L THIENED 5 20 OIEERTT, Lad> T, B k D (strict &) BIHICITHbN S L RE
LTHWEYA, R, ZNENDMEEE 0> —ELoHbiI A,

2 > ov=lpgr=24 190 kX FEEWIZIZ q; B b ICEZBHEIERNOBRAES 2RO B Z Lickh F
-a_o

S22, 50 SO REVEZMH) I LIEZHY A, ROMVICEZZBHEBHD £7,
BETHESBOES S ZEELET B, S DERDHZE > THIRZERTEDH?

COMCIZEZS 2 ERTEE, £9 50 5RO T, {1,2,...,49} ZB(ETH > THEZERTE 25
HWELET, WS 99 1A, {1,2,.., 48} ZHFCHE> THRZENTE 20 HEL 7. oI %
BRVGEENHTELS, 202 S ICHEAMGEML £, ZoOBRZHET2 2 LT, HEZEKT 201
DELTERER N OBROEEDRED £§, HEPERATHETH 22 L) i, S ={1,2,..,50} LT
FCHWICEZ 2 2 ETh) 7 (b2 BMASAFORALZHEEL THb D) X953,

Tl WOMEOREHIBEIEL xH. ROXIBENT T 7%2FZ T, EHRMICIE 026 50 OFFD
DVRTWVT, FEB v ITHLT, TRTDte SIZO2VT v 55 vmod t ~NDHMENH D £§, HENE
SRR DIE, % by DY a; OENENREZ L E T, ZLTZOLEICRY 3, (WEMIEZ ST 70EEDLS
HoT, Ttk FXT7OERENREL L ERFAUMHEIC X 282 - EOBRETE LOTTA SO, B
7 TY,) Tt BFS 7 DFS CHERTE £,

B —ZClE, #otEzZ O(N) Mg 2Eicah £y ([EHEN=50 £ LE¥), ZRZnoiiom
R 72z, BIfRYT 2THA T BFS 2 DFS %179 2°, Floyd-Warshall D 7L 2 XA %2722 LD
CEET, WA ON2) AFEL I s, CASDTATY ZMEEL S bRy — 2T O(N?) it % %
LET, Lo T, 73 XL E0EFREE O(NY) L) T (223 EBINZLTTH),

WOMET EIc 77 7 % %L 72D BFS/DFS 2% DEL7D LAaw I LT, M#EZ 2T O(N3) K
MICREC 2 EBAMBETT A, ZhiFFE~OMEMEE L7,



D. Shopping

AKEITIZ, TXRTOREZ —ED Fin U3 ETCOEBEDOR/NDEEREZ RO T L EITHERELE
9, BHEIEEE - HIAIGE) E3EHEERDOTLHETEZIEICLET (30 E ZOREIIEE LD TE
A3 2L Of5ETY),

9, DRIEHOMEZFHNL T, BE 0125 —0ZESET., FHicowT, BHESZORICH
POAS>TEHEPLHTH RS +1 % (RY, EHIFEHE 0 ICEPOAZDDEL FT), BHELZDHIC
S A>TEPSHTH B6MH -1 2, ZOMO5E (oo A>ThHp» S 20 % Oih) 134l 0 %2
DYCTET, BHELD I BFRHIE. TRTOHAOMHE 1,0, -1 OFIHD U TTH> T, ROFM%ELT XD
BLDOELTREET RDIID ED prefix (RFEZREL) IOV THHOMMPIETH D, $XTOHDAI
MO THD, ZNZTNOMAEZFUCE D ST 2 2R MIH 2, ¢ 20T OQ1) BickvonEd, ZC
<, dpli][j] & "RMID i Biciiz#E I ST, 2no0fE § ETIDICMBELRRNDIAL) LT B L,
O(N?) I DRERF S, WARZNS LT+ TT,

Tl MIPRREOBREICE D £ 7,

¥, TRTCD4; 2 2L THOTRVZEDET, 7220, t; 2320 THOYUINZGE, ZORZIY kK
ChIFIFwhky (—EIFE2 X)L AaTudR s hv) O THERSSBETY, UTF, 0<t, <2L &L
7,

FHUEHL (v,y) CREMST SN E T, 22T, o ik, BEIZOHUCEL SR EZIED THLYZ L
TGAHIL, ROBEDPEDP KD RS, 2FD t; <2(L —2;) THIUT 0 TH Y, XOEHH (RoOAEHIC
A TH6) Er6RE%6 21k 1 TF, y i3, BENPZOHIC» SR E ZIKED) THOYE LGS
. ROBEIENPOGKL %6, 2FD ¢, <22 THHUE 0 THY, 2HTRrJE 2 313, 2L T
Holedhl) t;,=0ThHs LI %L (1,1) DERE LT, HETEAZBYNTHS T LITLEL x99,

EHOTRE., o (B 0) 26HHE LTINS DRZM S 2DOIRFICH NG & ) BB ML AR ET,
r=0Ths&IRBULE»LSAS L, ETHADPKEL THPSEICE XKk, a=1Tho LI %
BUckhr o Ad L, ZOEFFBVRITaA P LML ET, B2 5 A2 5B FEKTT, M
A (EEE 0, L) 1SET 2 E, R DETHABKELTaA M 1ML £3, Fkc o HEE, THRORK
AAPERIMET S 2L TT (RBICEZICETREREZR L, LELET),

(1,1) DBRIZIFISWHTE 2 2 LICHEELET, BBV KT Ta A b 1 A SR EPSTT, 77
L, BEEXTRCORZ ~FIZNTHL LI ICHETERTI2LENH Y T, YUMo, (1,1) OFUIFE
Law e EL 27,

EFo, BELD (1,0) DBUZ (0,1) DERX DENCENS 2 LBV RICOHERLET,



RS (0,1),(0,1), ..., (0,1),(0,0), (1,0), ..., (1,0) E\WITETH B ERELET, 2T, (0,0) DER
DEIF 01 THRELET, SZHROUELET, TITOTAT7IE, ZNZNOHITOVWT, ZDIR
FaA b 1 TAMINGED KT 25, ZOBTa X+ 0 THMUGIANSET A BKIET 20086 50 Th 5,
EVIHIDBDOTT, LIAD, ZOXIRIPTHRPIMEIN TV L2, ROFUEM2 R M E2FREIETICA
ZZLIETEEEA (RIFXDMIcH2Z a2 1 THEDIKIT 20, BEE O 2 L TKIET25»TT), B
DHEM A A R EFEIRLODIE, ZUPRBICH NI TH 28550HTT, LarL, (1,0) DR DL
FEET 254, 2 L ERATRTRKEL 2o 20 vz, 2aED S+1DaR R
FET B EDHTEE T, (1,0) DFRDBHFEL R 0EEIE, UTFTOBAZBERN2A ML S -1 TY,
ZoHE L v Dl BEDOI ((0,1) 22 (0,0) ) X D& CITHBEEL. ZOBIC—EIZF S LT E% s
HOBET ((1,1) b, Biho THIERFEA oot 2), ZOBADEZBELST S+1 L4b
7,

—fiz i, BRI (0,0), (0,1) % (0,0),(0,0) % (1,0),(0,0) Vo REOESIlEELl LB D £
T, ROWUOH» S INsDRT7E2RLLHOGAETH T, BEORTO—HHOROBEZFVEANDH D
ZROFL &I, THIHIBRETERIITI 2EWTEET, TITODTATA TR, ZNH6DR7IEaR
M Z G Z TICROMTDL6MDBRS 2 ENTES, LWIHIDDTT, RS, A7O_FHOHI
WITE, L T—BHOHUAT>TE IO ERLRET LI ENTELLLTT, £oT, IhoDFULE
T2 LDTE, B OBKD - FBHORZ ~EIL#2 2 & I ZHETIUE L WTT, A7 2RLL D
DOV DIE, TNHEDRTEMORS EZEZE S+1 2 S—11ckdD, HIZS 2RIMETERER
»5TY,

INS5DRTEMYFRVH L, (0,1),(0,1),...,(0,1),(0,0),(1,0),....(1,0) &) EORDIGELFED |
22T (0,0) DEROEKIZ 021 T, TZTORNIALE S -1 S+1DELLICELZpEIFETIUL
FwTd, ZoEorERHEIZ O(N) TY,



E. Median Replace

E9. EDXIBEY MIBELLLIHLEL &9,
FEXROMBEXVFAL T VD, 22Tk admin OEZFHAL £7,

XFHN R, RO 1 OO 0 DE. BEOVAI 1L 1DOMD 0 DL, BED 1 DBD 0 DRGNS L
T, A ELTERLEL X9, BlzE, CFF1 0010001011 RS 25X [2,3,1,0,0] TT,

LTINS 282, BINCT 2 80EIC TRIER) §2 2R TE 9, TA%DI1E, WAIhD ¢ >3 %
r—2ICEZ5T L, HET S5 oD EF ry T rx+y— 1 ICESIRZ S 2 L WHEUATOMEHET S 0 2
21 R N e

2 XD REVAHBDERZTRT L ETHS L, 2 XV RECEHBOEREZ TRT 2 TS LTHIEAM
ICAREN B s 0o, DU, BAIOSERIZHTXE [0,2) WIchbELET,

T2E, fTZ2BERUTO L) ICHlibINE T : Zo0Hifit L@\ ch-oT A ED 0 TlEkw
YO 1 THESMAS, 1 22 SHIBRY 2, Wit T oM 2 0 ZHIBRY 2, AR, §XTHO
THD L) AN ER/™E LT,

TIFRNEICED R TR WS LICHERLET, LAad>T, UTTIERINZ 0 & 2 DAZEL LIREL £
—a—o

Fix, P Eo X5 ickE S il [al,ag, ...,ak] X, ZODIRAT p<gq TH->T ap = Qg = 0THY,
p DEE, q PERTHL LI BODVFEETHLEE, ZLTZDLEIW> THEZERTE X7,

FEEE, COEMEN I ROESNCED X ) IEEFEZT-oTH, FoNSRINEPIE D FE2 ST, £
Too ZMERME S B VE I RASIORINIELL R EBbLD T, 510, ZOEMEDNHLINEY
Bl ap & oa, DEDEHEETXTHIRL, ap, X DATOEHEZ TTCHIBRL (2 LAEHEIC 0 228 L T
Hl), BICHEAD S EREZHIFRL Tl (ZELERIC0 228 LTHH) L TRIND TR TOEEE
0ICTBIENTEET,

FLOBE, IZUDICTHRMD 1 DREID 0 O, 1 & 1IcEkEN 0 D%, RED 1 DED 0 %%
R, FINCEZIAAE T, RIS, 1 KHDREOEEEZTRT2IKHES L, 1 XD REVEHREZ TRT1ITH
5L, 1 ZFRTHIERL £ 9, Lo ZBINIC ap =a,=0,p < q, p D’AET q BPEETH 2 X )% p,q 3D
U, ZOXTFINIELL, RTNUETELSH D EA,

CDHESM 2 T, Bz DP 2179 & TELVXFI O Z O(N) KETHA S ENTEET,



EXRIIZoMEINO AR>S 7T 7 —F LE L, #RIZDTo@ED 7,

C CFAIDNE (L K Bv) DIZMUT OSSN 54T, $20858Iclons,

o XFFFT 1 2T 2D RAT3IMETTH S,

o XFHN 3 MWMOERT 2 1 2&0HG. 20k ) EMOES L AMOET DR I IZMEE TR TR
59, F22151 00-bad (b; € {00,01,10} & LT 0byby...be0 &\ I TEDLFHN) A FIULE &
2\,

o LFHID 2 KT S 1 #&T ko, BBEDHTIE 00-bad THRIFNER ST, AEEDTHTIX
L RTFIUER S AW,

o FH 2 HOMEHT S 1 2EEFRVAES, 1 TIHEST 1 TRO-oTIERS R,

CoMHZMwIUL, O(N) KHETEET 2 DP Oz REICES 2 ENTEET,



F. Checkers

BOfZE X, R (HTOfE) PAIKRZZE2FLE X EBETEZBZILENTEET, Thbb, 3L
FHOBOMEE (0,0,...,0,1,0,..,0) TEEINET, 22T, 1 LA>T030EY 7LD i FHOEHET
‘a_o

A2 o DEIDMZIE b DB 2 RO T & F, Hi7 2BIM0E 20 — o IEF N, JU4 D D DENIIHLY Frad
£9, N—1FROBEROREDY TVBED L) DD LEL X9,

BEELEDOE, ¥ TNVICEN B 6 24 BEAP T THLEICHEELET., HEREDOLELELINER
THETH B iU, ZORBENGOREZ 2 HEOREZ P ITTEZICERITI VT, Lo T, MR
RBDLEEERBED LI EDPDAEEZET,

BU®, (20} 2N fiH D $F. AT 7T, “O0%EE A B Wik sEs 2BU A (Rl 2%
BIZZNFNUNAS) HELET, BHICOD» D 2 Lk, BREEZNT 2 DRETHB I ETT, Richbhr 3
CLiE. EORADEROMLEIC 1 THD I LTT.

IHIT, EOEARITHLTH, BL 289 2 BWZDE/IHFHET B 56, 2071 22 271 L T Z20ELS
WWHEET S ZEICHEBLET, BRI, £85I £20 B30T 19 E—OFELET, ZN61TXRTYL
BEMETHY ., 2O LIRS ITREET,

Tk, RO EREL TEART R TREICED ) 2EAROTL X I 22541k No ©F, B/
I3 {—20,—21 —21 —9l 2l _91 92 93} T Yok IIHEFELTH ZORBOEARBL LR TE EE
hoo £V DT, BELME S SICHOTRFNIEAD $EA,

COFEDHEATIZ, U TOREFMEZEOT 2L I5TT,

TARTOBY i KU, FEPOER +2' OFSEEZABIET. 0<j<i THBLSBER +27 Ol
Z1IKTBIENTES,

COFMERDT S, SOBRETHE I LZINT20RELCH) A (ZOFME2IT DD
HBE2HATIELE I RIDEATHTIRLIV),

ZLTHEEI, COFRFETITOLD £, BEANBNECLD INZRLET, 22TOTA T T,
BRHCTOEAZ 2B, —A LV IHITBED DD X WIFHREICT T2 2 LXHICHHETH L, LVIHDT
T, S ZBRHTOESGLLET, 20€ S THEHADAEZEZET (1) —DOGALFAKTH S
Ted), k&, 428 PEACHFEET L) ARDOERELET, bL. 1 <i<kDTXRTUIHL, S
I =2 EN EEN A, B = {20, 21 . —2k2 qok-1y L LT, BYoBEE (FEEK
REET) ALLET, L, 200 S KKbx ) EEHNI LI i PEETIHAR, 20K



BiDIBRNDLDEEZET, i=1%6, B={-20} ZBALTHRIET. ~H.i>1DELEF
=20 32t + .. +2 ) = 204122  + ..+ 2 ) < 20— 1 TH DD, 20 OFEFEEZTN%E 1
ICT 52 LIIAARETH D, FIFICFELET,

FORBOEADHEFLD Lo 7DT, HD I B8 TVORERAZBBEBEIEDET, NSV 6K
FVHANE 2DRFEZMATHCIET, 7V EMEL LT, £/, REDPVEL 270N IHRRZ #HUT X
T, dplillj] . RE i DHNIB5 TN THHoT, &EN2 20RRELOMB 145V TH2EI%b
DOFELET, JIT HETICY 7VCEFNTORRERD 2 0RFEEL L L LTwET (DP 0BBET
9 kT, V ofizms Bz wI LIERLTLEI W), DP 0&BBICE, ibhd +V & -V 0¥z
FIRL, £V OFS2MIEATHNE 1 32 2 EMRTEILEMRTIUELVTT, #IREL S O(N?)
DEBD D D REOBIE O(N?) lTh 270, KEEHEEIE O(N?Y) &40 £3 (O(N®) Ofifk b EiFHE
ZEg L LML CGHED £9),



AGC 022 Editorial

zscoder

30 March 2018

A. Diverse Word

If the length of the string is strictly less than 26, then the next diverse string in
lexicographical order is the string appended by the smallest letter that has not
yet appeared in the string.

Otherwise, the string has length 26. Let S = p1paps...pag and suppose p;p;41...p26
is the longest suffix such that the letters are in descending order from left to
right, i.e. p; > pj4q1 for ¢ < j < 25. If § = 1, the answer is —1, because S is
the largest possible diverse string. Otherwise, the next smallest diverse string is
P1P2...Pi—2q, where ¢ is the smallest letter among p;, pi+1, ..., P2¢ that is strictly
larger than p;_1. (this letter exist because otherwise p;_; > p;, contradicting
the maximality of the suffix).
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B. GCD Sequence

Firstly, instead of considering the gcd of each element a; and the sum of the
remaining elements, we can consider the ged of each element a; with the sum of
all elements, S, because ged(a;, S — a;) = ged(a;,.S). The constraints actually
contain a small hint to the solution. The tight constraints suggests that we have
to take around two-thirds of the numbers between 1 to N.

The main idea is that if we pick S to be a multiple of some small primes, then
we just have to ensure a; are divisible by the small primes and the gcd of ev-
erything is 1. This inspires the choice of S = 6k, for some integer k. Then, all
we need to do is to pick a; such that they are all multiples of 2 or 3, and make
sure the ged of every element is 1.

Coincidentally, around two-thirds of the numbers from 1 to IV are divisible by
2 or 3, i.e. the numbers of the form 6k + 2, 6k + 3,6k + 4 and 6k. Furthermore,
if we pick both 2 and 3, then the gcd of the chosen elements will always be 1.

We're almost done. We just need to take care of some small cases and ensure that

S is a multiple of 6. For N < 5, we can take {2, 5,63}, {2, 5, 20,63}, {2, 5, 20, 30, 63}
respectively (there are also other constructions, and note that the first 2 are con-
veniently given in the samples). Thus, from now we assume N > 6.

Let’s take the numbers of the form 6k + 2,6k + 3,6k + 4,6k + 6 from small to
large. The only issue is that the sum might not be divisible by 6. It can be
easily seen that the sum is either congruent to 0,2, 3,5 modulo 6 respectively.
Let’s consider each of them separately :

e If S is divisible by 6, we’re done.

e If S =2 (mod 6), then we remove 8 from our set and insert the next
multiple of 6.

e If S =3 (mod 6), then we remove 9 from our set and insert the next
multiple of 6.

e If S =5 (mod 6), then we remove 9 from our set and insert the next
number of the form 6k + 4.

Here’s another simpler construction :

For N = 3, use the construction in the samples. If NV is even, we can add the
numbers in the order 2,10,3,9,4,8,6,12,... (the next 8 terms are the first 8
terms added by 12 and so on). If N is odd, we can add the numbers in the
order 6,2,10,3,9,4,8,12, ... (the next 8 terms are the first 8 terms added by 12
and so on).
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C. Remainder Game

First, note that for each number v, if we have applied an operation on it with z,
then it doesn’t make sense to apply an operation on it with any y > z, since it
will not change the value anymore. Thus, we may assume that the operations
are done in strictly decreasing value of k. In particular, each value should be
used at most once.

Since 2% > 271422724 | 120 essentially we need to find the lexicographically
smallest sequence of operations to convert a; into b;.

Clearly, we will not use any numbers larger than 50. We need to answer the
question :

Suppose we fized a set of values S to use. Is it possible to achieve the goal using
only the elements in S?

If we can answer this question, then we can start from 50 and determine if we
can finish the task using the set {1,2,...,49} in our operations. If it is possible,
we move on to 49 and determine if we can finish the task using {1,2,...,48} in
our operations. Whenever we reach an integer that we must use, we add it to
the set S permanently. Continuing this process, we get the lexicographically
smallest set of values needed to achieve the goal. We can also check whether
the goal is impossible by answering the same question with S = {1,2,...,50}
(though there is also a simple condition to check it).

Now, we focus on answering the subproblem. Construct a directed graph where
the vertices are the numbers 1 to 50 and for each integer v, there is a directed
edge from v to v mod ¢ for all t € S. The task is possible if and only if each inte-
ger b; is reachable from a; (one direction follows from the definition of the graph,
the other direction is also obvious since if each pair can be reached individually,
we can combine the operations with the same value into one operation). This
can be checked with BFS or DFS.

In the worst case, we’ll answer the question O(N) times (we let N = 50 for
convenience), and to answer each question, we can do a bfs or dfs on each rele-
vant vertex or just run Floyd-Warshall algorithm. Both of these algorithms take
O(N3) time in worst case, since there can be O(N?) edges. Thus, the entire
algorithm runs in O(N*) time (albeit with a small constant).

It is also possible to solve the problem in O(N?) time by not reconstructing the

graph and redoing bfs/df for each question. This is left as an exercise for the
reader.
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D. Shopping

Note that we are essentially just calculating the minimum number of round
trips the train should make before we can visit every station at least once and
go back home. We'll calculate the number of trips in one direction (call this a
round) made by the train and multiply the answer by L. (though note that the
number of trips must be even, so the answer is always divisible by 2L)

First, we describe the quadratic-time solution. Add a dummy station at coor-
dinate 0. For each station, we will assign a value 41 if in our trip, the train
enters the station from the right and departs from the right from this station
after shopping (assume that the train enters the station at coordinate 0 from
the right at the start), —1 if the train enters the station from the left and de-
parts from the left, and 0 otherwise (enters from left, departs from right or vice
versa). A valid path of the train can be described as an assignment of values
1,0, —1 to the stations such that every proper prefix of stations have positive
sum and the sum of all values are 0. The cost of assignment of each value to
each station can be computed in O(1) time using the values of x; and ¢;. Now,
we can let dp[i][j] be the minimum cost to assign values for the first ¢ stations
so that the sum is j. This solution works in O(N?) time. This is enough to get
the partial points.

Now, we move on to the linear-time solution.

Firstly, we can take all ¢; modulo 2L. However, care must be taken when ¢; is
divisible by 2L, since we can’t just remove the station (we will have to make
sure we pass through it at least once). Anyway, from here we will assume

Each station can be characterized by a pair (z,y), where z is 0 if when we
stop at the station when the train is travelling from the left, and after we finish
shopping the next train will come from the right, i.e. ¢; < 2(L — x;), and 1 if
the next train will come from the left (after going through one more round). y
is 0 if when we stop at the station when the train is travelling from the right,
and after we finish shopping the next train will come from the left, i.e. t; < 2x;,
and 1 otherwise. Let’s treat the stations with ¢; = 0 (after reduction mod 2L)
as (1,1) stations, and subtract the answer appropriately later.

We can consider the train trip as a moving point, where we start from the left
side (coordinate 0), and enter these stations in some order. Whenever we enter
a station with x = 0 from the left, we rebound in the opposite direction (so now
it moves from right to left), while if we enter a station with z = 1 from the left,
we pass through it and increase our cost by 1. The move pattern is similar when
entering a station from the right. When our point hit the left and rightmost
point (coordinates 0 and L), it rebounds and the cost is also increased by 1.
Our goal is to minimize the total cost of the trip (in the end we add the answer
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with an appropriate constant and multiply the answer by L).

Note that we can almost ignore (1,1) stations, as we just pass through them
and increase the cost by 1. However, we have to make sure our path passes
through all these stations at least once later. For now, suppose there are no
(1,1) stations.

Note that by definition, (1,0) can never appear before (0,1) stations.

Suppose our sequence of stations is of the form (0, 1), (0,1), ..., (0, 1), (0, 0), (1,0), ...

where there can be 0 or 1 (0,0) stations. Let S denote the number of stations.
The idea is that for each station, either we pass through it with the side with
cost 1, or we make a rebound on the side with cost 0. However, the arrangement
of stations of this form means that it is impossible to enter the next station with-
out additional cost (either you pass through the new station on the side with
cost 1, in which case we can ignore it, or you rebound from coordinate 0 or L).
The only way a station will not incur an additional cost is if it’s the last station
visited. However, if at least one (1, 0) station exist, we can that we’re forced to
rebound from the right end at least once, so we can prove the cost is at least
S+ 1. If no (1,0) stations exist, then the minimum cost is S — 1, unless there
exist a station beyond the last station (0,1) or (0,0) which we must touch at
least once (caused by either a (1, 1) station or removed stations that we will see
later), in which case the answer is still S + 1.

In general, our sequence of stations can have subsequences of the form (0, 0), (0, 1)
(0,0),(0,0) and (1,0),(0,0). Let’s find the maximum pairing of these subse-
quences in our sequence of stations, where the index of the first station of the
last matched pair is minimal. This can be done in linear time greedily. The idea
is that we can remove these subsequences without affecting our cost, because
we can go to the 2nd station of the pair first, rebound to the first station of the
pair, and rebound from there again. So, we can ignore these stations and only
have to make sure our remaining path passes through the first station at least
once. The maximum matching is optimal because once we remove these pairs,
our answer is either S+ 1 or S — 1, so it is always best to minimize S.

After removing these pairs, we're left with a sequence of stations of the form
(0,1),(0,1),...,(0,1),(0,0), (1,0), ..., (1,0), where there can be 0 or 1 (0,0) sta-
tions, and we can compute whether the minimum cost is S — 1 and S + 1. This
solution takes O(N) time.
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E. Median Replace

Firstly, we’ll analyze which binary strings are beautiful.
Below, I will describe the admin’s solution since it’s simpler to describe.

Let’s represent our string as an array, denoting the number of zeroes before the
first occurrence of 1, between two consecutive 1s and after the last occurrence
of 1. For example, the array for the string 0010001011 is [2, 3,1, 0,0].

The operations on the string can be translated to operations on the array. We
can either change x > 3 in the array to z—2, change replace consecutive elements
x,y with x + y — 1, or delete two consecutive Os that are in the middle of the
array.

Below we will assume that all elements of the array are always in the range
[0, 2], where all odd elements larger than 2 has been reduced to 1 and all even
elements larger than 2 has been reduced to 2, since it doesn’t really affect our
operations.

Then, the operations are simplified to replace two consecutive even numbers
which are not both 0 with 1, remove 1 from our array and remove 2 consecutive
Os that are in the middle of the array. Our goal is to reach an array with all
zZeroes.

Note that we can remove all the 1s in the array immediately. Thus, from now
we will assume our array only consists of Os and 2s.

We claim that the reduced array [ai,as, ..., ax] works if and only if there exist
two indices p < ¢ such that a, = a; =0, p is odd, ¢ is even.

Indeed, note that any operation on an array that doesn’t satisfy the condition
will also give an array that doesn’t satisfy the condition, and we can see that
the small arrays not satisfying these conditions are bad. Also, if this condition
holds, we can remove all the elements between a, and a4, remove all the elements
before a, (except potentially a pair of leading 0s), and finally remove elements
from the back (except potentially a pair of suffix 0s) until all elements of the
array becomes 0.

To summarize, first we find the number of 0s before the first 1, between each
pair of 1s and after the last 1 and write it into an array. Then, we reduce all
even numbers larger than 1 to 2 and reduce all odd numbers larger than 1 to
1. Remove all the 1s in the array. If in the remaining array we can find p,q
such that a, = ay = 0, p < ¢, p odd and g even, then the string is beautiful.
Otherwise, it is not.
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With the criteria above, we can do a simple dp to count the number of beautiful
strings in O(N) time.

The author approached the problem from a different direction and here’s the
result :

A string is bad (not beautiful) if and only if it satisfies the following :
e It contains at most 3 consecutive ones.

e If it contains 3 consecutive ones, the parts to the left and right must have
even length, and must be 00-bad (which is of the form 0b1bs...b0, where
b; € {00,01,10}).

e If it contains 2 consecutive ones, the even-length part must be 00-bad
while the odd-length part must be bad.

e If it does not contain 2 consecutive ones, it must not both start and end
with 1.

With this property, it is straightforward to write a dp solution that works
in O(N) time.
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F. Checkers

We can consider the positions of the checkers in base- X, possibly with negative

coefficients. Thus, initially the i-th checker can be represented by (0,0, ...,0, 1,0, ...

where the i-th element of the tuple is 1.

When a checker at position a hops over a checker at position b, a checker is
created at position 2b — a and the two previous checkers are removed. Let’s
analyze how the final tuple looks like after N — 1 operations.

Note that the only important thing is the multiset of coefficients that appear
in the tuple. Once we know that a multiset of coeflicients is achievable, we can
multiply it by the number of ways to arrange the coefficients and add it to the
answer. Thus, from now on we’ll only consider how the multiset of coefficients
look like.

Initially, we have N copies of {2°}. Every step, we can merge two sets A, B into
a new set 2B U —A (elements are counted with multiplicity). The first observa-
tion is that the coefficients are always powers of 2. The next observation is that
the sum of coefficients of every set is always 1. Also, note that for any set, if 2¢
or —2% exist in the set, then 2¢=1 or —2¢=! must exist in the set. Finally, £2°
must appear exactly once in the set. All these are necessary conditions and are
very easy to prove.

However, are all sets satisfying the above conditions valid final sets? The answer

is no. The smallest counterexample is the set {—2°, —21 —21 21 21 91 92 931

No matter how you try, you can never form this set of coefficients by the oper-
ations. Thus, we still need to find more necessary conditions.

The hard part of the problem is to find the following necessary condition :

For all integers i, it is possible to change the signs of the elements
+2' in the set such that the sum of the elements +27 with 0 < j < is
equal to 1.

Once you find this condition, it is not hard to prove that it is necessary (just
consider what happens when we merge two sets satisfying this condition).

In fact, this condition is also sufficient. We can use induction to prove this fact.
The idea is that we can always find a partition of the current set into two good
subsets of the form 2B and —A. Let S be our current set. We’ll only look into
the case where —2° € S since the other case is similar. Let k be the smallest
integer such that +2% exist in the set. If for all 1 < i < k, —2° appears at
least twice in S, then we can choose B = {—20, —21 ... —2F=2 42k=11 and the
remaining elements (negated) goes to A. If some i exist so that —2¢ appears
exactly once in S, then consider the smallest such ¢. If i = 1, we can just pick
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B = {-2°} and proceed. However, if i > 1, then —2° — 3(2! + ... + 2¢71) =
=2+ 1—-2(2' + ... +271) < =27 — 1, so it is impossible to change the sign of
—2% so that the sum is 1, which contradicts the condition.

Once we have the criterion of good sets of coefficients, we can proceed to the
count the number of valid tuples. We build the tuples starting from the small-
est power to the largest power. We will multiply binomial coefficients whenever
necessary. Let dp[i][j] be the number of valid tuples of length i such that the
sum of the powers are 1+ j-V, where the previous largest power of 2 is % (Note
that it is not necessary for us to know the value of V' to do the dp transitions).
For the dp transitions, we just iterate through the number of +V and —V taken
and check whether it is possible to reassign the signs for the +V's so that the
sum is 1. The dp transitions are O(N?) and there are O(N?) states, so the time
complexity is O(N?). (O(N?®) solutions can also pass without problems even
without precomputation)
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