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D: Isomorphism Freak
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F: Simple Subsequence Problem
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A: Fairness

Let d be Takahashi’s integer minus Nakahashi’s integer. How does d change after each operation?

Suppose that initially d = x. The three people have integers (A + z, A, B) for some A, B. After one
operation, the three integers will be (A+ B, A+ B+ x,2A+z), andd= (A+ B) — (A+ B+x) = —x.

Thus, in each operation the value of d is multiplied by —1. If the number of operations is even, the

answer is A — B, otherwise the answer is B — A.

B: Backfront

Suppose that we can sort the sequence without performing operations on integers 1, ..., zx(x; < 29 <

...). Then, the following conditions must be satisfied:

e Those integers will form a consecutive interval in the sorted sequence. Thus, for each ¢, ;41 = x;41
holds.
e The relative positions of those integers won’t change. Thus, for each i, z; must be to the left of

Z;+1 in the initial sequence.

On the other hand, if these conditions are satisfied, we can sort the sequence in N — k steps (without
moving those integers). For example, we can move integers x1 — 1,..., 1 to the beginning in this order,
then move integers zy + 1,..., N to the end in this order. Thus, we want to compute the maximum
possible value of k for such 1, ..., k.

This can be done by using a permutation @ such that Q[P[i]] = 4. This solution works in O(N) time.



C: Sequence Growing Easy

By repeating operations, we can never satisfy X; > 0 or X;1; — X; > 1. Thus, in case A; > 0 or
A;r1 — A; > 1 for some 4, the answer is —1. From now on, we assume that A; =0 and 4;4; — 4; <1
(and in this case, it turns out that we can always achieve the goal, as we see below).

First, let’s compute the lower bound on the number of operations. Suppose that A; = ¢t. In order to
satisfy X; = ¢, at some point during the operations, either ¢t = 0 or X;_; =t — 1 must be satisfied. By
repeating this observation, for each s(1 < s < ¢), at some point during the operations, X; ;s = s must
be satisfied.

Thus, the number of different pairs of (i — ¢ + s,s) (that can be obtained this way) gives the lower
bound on the number of operations. This value can be computed by adding 1 in case X;_; +1 = X,
and X; otherwise.

On the other hand, we can always achieve the goal within the number of operation computed above,

as follows:

e If X = A, we achieved the goal, we stop performing operations.
e Otherwise, let 7 be the maximum integer such that X, £ A,. For each ¢ — X,. + 1,...,7 in this

order, perform an operation X; = X;_1 + 1.

This solution works in O(N) time.



D: Isomorphism Freak

Let D be the diameter of the given tree. Since two vertices on the diameter are not congruent
unless they are at symmetric positions of the diameter, (and the diameter never decreases by performing
operations), the colorfulness of the tree must be at least .

We can always achieve this colorfulness, and let’s compute the minimum number of leaves in this case.

In case D is odd

Since L%J +1> L%J , in order to achieve the minimum colorfulness, we must not change the diameter
by operations.

In this case, the tree has two centers. To keep the diameter, we must keep these two centers, and each
newly added vertices must be within the distance of D/2 from the centers. Here, the distance between a
vertex and the centers is defined as the distance between the vertex and the center closer to the vertex.

It’s easy to see that we can achieve the minimum colorfulness if and only if (we don’t change the
centers and the diameter and) all vertices at the same distance from the centers have the same degree.

Thus, in this case, the minimum number of leaves can be computed as follows:

e Ignore the edge between the centers and split it into two rooted trees (roots are the centers).
e For each d(0 < d < |Z]), let 2; be the maximum number of children of vertices at depth d.
e The minimum possible number of leaves is the product of all z; times two (since we’ll get to

isomorphic rooted trees).

In case D is even

Since [ 24| +1— £ ], there are two cases: we don’t change the diameter, or we increase the diameter
by one by operations.
In this case, the tree has a single center. Let’s call it c.

There are two cases:

e Keep c as the unique center, and keep the diameter to D.

e For some vertex v adjacent to ¢, make ¢, v two centers, and change the diameter to D + 1.

The former case is similar to the solution described above. The latter case can be handled by trying
all possibilities for v. Thus, this solution works in O(N?) time.

Note that by using the fact that > x; < N, we can prove that the answer always fit in a 64-bit integer
(because we can bound the value of []x;). Also, note that it is also possible to solve this problem in
linear time (left as an exercise for readers), assuming that we can perform basic operations on big integers

in constant time.



E: Sequence Growing Hard

When can we insert an integer x to the left of an integer y, and make the sequence lexicographically

larger? There are two cases:

o x> y.

e r =y, and the first integer that is not x after this position is greater than z.

However, we don’t need to consider the second case. In the second case, if the first integer that is not
x is 7, we can insert x immediately to the left of this r, and this change doesn’t affect the sequence. On
the other hand, if we allow only the first case, if we insert an element at different positions we always
get different sequences, thus we want to count the number of ways to perform operations when we are
allowed to perform operation only in the first case.

Let’s convert the sequence of operations to a rooted tree in the following way.

e Start with a tree with a single node. In this tree each vertex has two values: id and label. The
only vertex has id = 0, value = 0.

e Suppose that in the k-th (1-based) operation, we insert an integer ¢ to the left of the integer that
was inserted in the p-th operation (or p = 0 in case we add it to the end of the sequence). Then,

create a vertex with id = k,value = t, and its parent is a vertex with id = p.
Now, what we want to compute is the number of rooted trees with the following properties:

e Each vertex has two values: id and label.

e id are assigned sequencially in the order 0,1, .. ..

e The label of each vertex is between 0 and K.

e For each node, its id and its label are strictly greater than parent’s id and parent’s label, respec-

tively.

Let DP[n][z] be the number of rooted trees (with the properties above) with n vertices such that the
label of the root is x. The answer is DP[N + 1][0].

To compute this DP, notice that the parent of a vertex with id = 1 must be a vertex with id = 0. If there
are k vertices in the subtree rooted at id = 1, there are 3 _  DP[n —kl|[z]x DP[k][y] xcomb(n —2,k—1)
ways to decide a tree.

Now it’s easy to make it O(K N?) using prefix sums.



F: Simple Subsequence Problem

For each string s such that |s| < N, let’s compute the number of elements in S that contains s as a
subsequence. After getting these values, the original problem can be easily solvable.

Our plan is to construct a DAG with the following properties:

For each string s such that |s| < N, there is a red vertex labelled with s.

For each string s such that |s| < N, there is a blue vertex labelled with s.

e Additionally, some black vertices may exist.

If ¢ is a subsequence of s, there is exactly one path from red s to blue t.

Otherwise, there is no path from red s to blue t.

Once we construct this DAG, we can get desired values by writing 1 on each red vertex labelled with
an element in S, and run a DP on the DAG.

Let’s construct the DAG. First, how can we list all subsequences of a particular string s? Remember
that to check if a string ¢ is a subsequence of s, we shuold choose each character in ¢ from s greedily
from left to right.

Let [s] denote the set of all subsequences of s. For example, how can we compute [000110101]?

If ¢ is a subsequence of 000110101, there are three cases:

e t starts with 0. In this case the remaining part of ¢ must be a subsequence of 110101. These
strings can be represented by 0[00110101] (a single 0 followed by a subsequence of 00110101).

e t starts with 1. In this case the remaining part of ¢ must be a subsequence of 10101. These strings
can be represented by 1[10101].

e An empty string.

Thus, [000110101] is a disjoint union of 0[00110101], 1[{10101], and [].

Now, we can see that the following construction satisfies all the properties:

For each pair of strings (s,t) such that |s| + |t| < N, prepare a black vertex labelled with s[t].

If t contains 0 and the (0-based) position of the first occurrence of 0 in ¢ is 4, add an edge from
black s[t] to black s0[t'], here ¢’ is the suffix of ¢ with length [¢| — ¢ — 1.

e If ¢ contains 1 and the (0-based) position of the first occurrence of 1 in ¢ is 4, add an edge from
black s[t] to black s1[t'], here ¢’ is the suffix of ¢ with length |¢t| — ¢ — 1.

If ¢ is empty, add an edge from black s[t] to black s[].

For each string s, add an edge from red s to black [s], and add an edge from black s[] to blue s.

The number of vertices in the DAG is O(2VN), and this solution works in O(2VN) time.



