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B : RGB Coloring
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C : Interval Game

EEEOKERBEIOM T, TTIZEEN TV AEAIZEIN RV, £ 95 TRWEAIX, 52 bnKHE0ir
WHOHMETEH, EWVWHIHDTT, Ik, KEOIEWSTOMEETBEL ChLERE#HMELEL, FD
AT v TN T2H ENZZDNEENTIE LW E T,

ST, BEEOREEIE I N2 T, EABOKEKKAZEZXEL LS5, TI T, HABITTITOXHE
EEIMLENRZNELTHINWTT, 20, MENORMEZH L THRPTOOEELTYH, EABKRELRD
ZEEHY EHA, UM EICTE TE 9,

ZOWRBNR I EMTIHEZ D END 2 ETTR, RIIFABIIALELXKHEEZ RN LT, AERED
& Z2HMET 22N TEET, 9, BBEN 2 BEFE TR UM, 2V, #ECHICBE LY #kET
FEIZBET AT EETEET, i, EORBE OREEK A E X VI 60T, LoT, HAEIER
VERXEZTET 22 LT, BBENBET A& EZEREZ DL IICE L2 THrenTEES, 0
TlEEZHL, HABIREHBEZLIZEHNTOOXMELICENTEOOXEO 2 SO&EEINC, £XKHE
DT TEZDZLENTEDLE IR £,

SFY, FXEE, AAXIC Ly CET, E, ARXIC R, FTCHNTZO0L0LE L TERDL D
ENTEET, 2L T, BEIEHA~OREILIRDNENI &, FHXITEIRD 20, EMXICHEI D
—2R; D ET, Lo T, ZOEEBRRKENLONLIERIZERIE > TWFIFLSZE 9 TH, =ZE L, Al
TEI LD EEMEIME ) bOOEE DT 1 UNIZINE LT ER L2000 T, ZO&MGEmZT LD
WCEBKICED 72 T Ui 8 A,

CITRICRLIDIEF. RUKMETMFORMETHE-TLEDLRVNEWNS Z L TTR, FXMIZHONT
2L; —2R; < 0 20T, FUKMZMGTOMETHEH Z ENRKEICRDZLIEHY EHA,

DlbEzaF s, AMEIE ML LRSI HREROITo7- & X2, EOXEEMW D IEERIC
o THRERNENS ZETY, LIoT, BITEUIZY— b 2EETHZ LT, O(NlogN) OFFERET#EL
TENTEET,



D : Choosing Points
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E : Walking on a Tree

FPEZOLEREEZTCHELL Y, ADOEW i IZH LT, TOUEBBHAHOMEE ¢; 2E2ET, 2D
LELHLMNIT Y min(e,2) FERERVET, LWVIHDH, FLIHOEMEIT 2@ LARVDOT, £0Dil
BF@RHI ETHELNAELEEIEXY 2 THLHINLTT,

THEBICZOEREZERTEDLLZRLELL Y, JHIWMEICEI s TORTZENRTEET, T
n=10LXFZLTHLANRVOTHLNTT, EoT, n NEV/PENFACEETENIZIVTT,

FI BEUREL 0 L L v ICBETI N e 2EZXET, ce =0 DHEAIT v ZEHLTCLEZITIVMNLH
ENTT L, ce =1 DFADL, v ZWAICHOBEONIEE, v vH e Db I —FHOWAIZEZ UL VDT,
BHONIRETEET, ROT, ¢y 22 DHEEZZDELTENTT, ZOLE, v ZHAICFOHSBE 2
OENET, TNHD v TRWVWHFDHSEZ a,b ELELE D, ZOLE, INLOBSOREE, a—>v—b
LI b= v—a tEDDILET, ZNHOEBEOILBEBHFIIMAE TH-7ZZEICLEZIZTa b b
NOBHBREBINT S, EWVIHORMEFR—HETEET, LoT, v ZHELHEVOESL, WSz v beDH
—HOWRERRTET, n—1 P A XOEHRIT/ET LN TEET, LoT, M EREZERTE
LT ENREELE,

FEEEORIT LD EEZHFEICEETNIEE AT v 7 ON + M) TRIHETY, 20T, £k & LTI
O(N(N + M)) OftHEETHS ZLNTEET,



F : Addition and Andition
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A : Digits Sum

We can compute the answer by brue force, but here’s more interesting solution: the answer is 10
if N is a power of 10, otherwise the answer is the sum of digits of V.

It’s clear that the answer can’t be smaller than the sum of digits of N: consider computing the
sum on paper. The sum of the sum of digits decreases whenever we get a carry. However, when N
is a power of 10, obviously the answer can’t be 1, so the answer will be 10 (it must be the same in
modulo 9).



B : RGB Coloring

Let’s assume that a layer painted by green is a layer painted by both red and blue (and ignore
green). Then, in this problem, we paint layers by two colors (but we may paint the same layer with
two colors).

The problem will be the following:

Find the sum of (J:) X (]I\)]) for all 0 < a,b < N such that Axa+ B xb=K.

Here, a is the number of layers painted by red, and b is the number of layers painted by blue.
By trying all possible values for a, we can compute the value above in O(N) time.



C : Interval Game

Takahashi’s optimal strategy is as follows. If he is already contained in the new interval, he
shouldn’t move at all. Otherwise, he should move to the nearest endpoint of the new interval. It
doesn’t make sense to move more than that - instead, he can ”postpone” the extra movement and
the total distance he moves won’t be greater.

What is Aoki’s optimal strategy? Since we know Takahashi’s optimal strategy, we can regard
the game as Aoki’s single-player game. Whenever Aoki puts an interval, Takahashi moves in a
deterministic way (as we mentioned above), and Aoki wants to maximize the total distance Takahashi
moves. Let’s modify the rule of the game a bit: Aoki doesn’t necessarily have to put all intervals
(and after he stops putting intervals, Takahashi returns to the origin). Anyway, since ignoring some
intervals never make Takahashi’s distance greater, the answer won’t change.

Now, since we can omit unnecessary intervals, we can assume that we never put an interval that
contains Takahashi. Also, we never move Takahashi to the same direction twice in a row (in this case
we can omit the first interval). Thus, we need to consider only two types of movements by Aoki:

e 1. When Takahashi is to the left of L;, move him to L; by choosing the interval 1.
e 2. When Takahashi is to the right of R;, move him to R; by choosing the interval i.

Also, note that these two types of movements must be performed alternately.

To simplify things, instead of forcing Takahashi to start/end the trip at origin, let’s add an interval
[0,0] to the set of intervals. How can we compute the total distance if we know the set of intervals
used by Aoki? If k intervals with indices i1, ...,%; are used for the first type of movements, and k
intervals with indices j1,...,j; are used for the second type of movements (since those two types
must be performed alternately, the numbers of intervals must be the same), the total distance will
be:

Q(Lil +"‘+Lik *le 7'”7Rjk)

Thus, for a fixed k, we can just choose intervals greedily, and by trying all possible values of k we
can solve the problem in O(N log N) time.

Note that we will never choose the same interval twice (in two types of operations) in the optimal
solution because for each interval 2L; — 2R; < 0 holds.



D : Choosing Points

It turns out that in this problem, you are given two bipartite graphs with V' vertices, and you are
asked to choose % vertices that is an independent set on both graphs.

First, let’s prove that the following graph is a bipartite graph: the set of vertices is the set of
integer points on a plane, and there is an edge between two integer points if the distance between
them is v/D. Let’s do an induction on D.

In case D is odd, this is easy. If there is an edge between (z,y) and (z+ s,y +1), since s2 +t2 = D
is odd, the parities of s and ¢ are different. Thus, we can color a point (z,y) based on the parity of
z + y (standard chessboard coloring).

Suppose that D is even. If two cells p,q are at the distance of v/ D, they must be painted in the
same color in a chessboard (assume that they are black cells). Now consider only black cells in a
chessboard: these cells form a new square grid that is v/2 times larger than the original grid (and
rotated by 45 degrees). If we change the unit distance by a factor of v/2, the (original) distance of
VD corresponds to the distance of v/D/2 in the new grid. Thus, we can reduce to the case with
D/2, and by the induction, we prove that the graph is bipartite.

Therefore, we now see that the graphs are biartite, and we now want to solve the problem mentioned
at the beginning.

First, let’s color the cells black and white, such that it becomes a bipartite coloring for the distance
v/D1. Similarly, let’s color the cells red and blue for the distance v/Ds. Each cell is painted in two
colors, and there are 2 x 2 = 4 possible patterns for a pair of colors in a cell. Thus, there is a pattern
(a pair of colors) such that there are % = N2 or more cells that are painted in this pattern. From
the definition of the colors, it’s clear that these points satisfy the conditions.

The slowest part is the construction of graphs. It is obviously O(N?3), and a detailed analysis will
show that it will work much faster (because there are not so many pairs (s,t) such that s? + t2 =

D107’D2).



E : Walking on a Tree

First, let’s get the upper bound of the happiness. For each tree edge i, let ¢; be the number of
walks that pass through this edge. Since there are only two directions for this edge, the number
of happiness we can get from this edge is at most min(c;,2). Thus, the upper bound of the total
happiness is > min(c¢;, 2).

We’ll prove that we can always achieve this upper bound, in a constructive way. We do an induction
on n, the number of vertices. In case n = 1, there’s no edge and this is trivial. Suppose that n > 1,
and let’s reduce to a case with smaller n.

Take an arbitrary leaf, and call it v. Let e be the only edge incident to v. In case cc = 0, we can
simply remove v from the tree. In case ce = 1, we can also remove v from the tree. Here, the walk
that involves v will be converted as follows: if this walk is between v and z, it will be converted to
a walk between w and z, where w is an endpoint of e to the opposite of v. Thus, we assume that
cy > 2.

Take two walks that involve v. Suppose that they are (v,a) and (v,b). Let (v, ¢) be the intersection
of these two paths. Now, we add a restriction: if we choose a — v we must choose v — b, and if we
choose v — a we must choose b — v. With this restriction, we can ensure that the edges between
v and c are covered in both directions, and in the future we can ignore those edges. Thus, a — v
and v — b is equivalent to a — b, and v — a and b — v is equivalent to b — a. Now we can remove
two walks (v,a) and (v,b) and add (a,b) instead. By repeating this process while ¢, > 2, we will
eventually get a case with ¢, < 2. Therefore, by induction, we can always achieve the upper bound.

The proof above shows a construction. Each step can be done in O(N + M), and this solution
works in O(N(N + M)) time in total.



F : Addition and Andition

Define two strings S, T as follows:

e If the i-th bit in the binary representation of X is 1, S; = 1, otherwise S; = 0.
e Similarly define T for Y.

In each operation, we perform the following for the strings:

e For each i such that S; =T; =1,1let S; =T; = 0.
e Then, for each such ¢, add 1 to both S; 41 and T;41.
e Then, handle ”carries” of S;, T;.

Let’s handle ”carries” as follows:

e In the decreasing order of ¢, when we find ¢ such that S; = 2, repeat the following;:
— For j =4,i4+ 1,9+ 2,... in this order, do the following.
— If S; =2, let S; =0and add 1 to Sj41.
— Otherwise break the loop (and proceed to the next 7).

Now we can restate the operations in the statement as follows:

e In the decreasing order of ¢, when we find ¢ such that S; =T; = 1, let S; = T; = 2 and repeat
the following:--(X)
— For j =4,i+ 1,7+ 2,... in this order, do the following.
— If §; =2,let S; =0and add 1 to S;41.
— If T} = 2, let T; = Oand add 1 to T}j41.
— If neither of above holds, break the loop (and proceed to the next 7).

In this task, we are asked to compute the states of S,T after we repeat the operation above K
times. Thus, we do the following:

e Foreacht=0,1,..., K — 1, do the following.
— In the decreasing order of 4, ...

Here we have a hypothesis: the order of the two loops (a loop for ¢ and a loop for i) doesn’t matter.
If we change the order of the loops, we get the following:

e In the decreasing order of 7, do the following.
e Let z = K be a counter that represents the number of remaining operations we may perform.
— For j =14,i4+ 1,9+ 2,... in this order, do the following.
— If §; =T; =1 and z is positive, let S; = T; = 0, add 1 to both S;11 and T} 1, and
decrement z by one. (However, if z < 0, break the loop.)
— If §; =2, let S; = 0and add 1 to Sj41.
— If T; =2, let Tj = Oand add 1 to T}4.
— If neither of above holds, break the loop (and proceed to the next 7).

Why can we swap the order of the loops like this? Notice that after the operation (X), S; =T; =0
will always be satisfied. Therefore, even if we perform (X) for positions before current 7, since the
total increase of the value is at most 2% — 1, it doesn’t affect the i 4 1-th bit or more significant bits.
Using this fact, we get the following observation. Consider the maximum ¢ such that S; = T; = 1.
Suppose that when we perform (X) for position 4, the operation ends at position j (with S; = T; = 1).
Then, even if we perform an operation for j before performing operations before position ¢, the result
doesn’t change. By repeating this observation, we can prove that the order of the loops doesn’t
matter.



Now, it is sufficient to simulate the process quickly after the loops are swapped. Let’s restate the
problem as follows:

e In the decreasing order of i, when we find i such that S; =T; = 1, let S; = T; = 0 and do
the following:
e We keep a counter z (the number of remaining operations we may perform) and a string x.
e Initially, z = K,z = 11. The length of = is always 2, and it ”carries” from lower digits. If
z = 10 we have a carry only from S, if x = 01 we have a carry only from T, and if x = 11 we
have carries from both strings.
— For j =4,i+ 1,7+ 2,... in this order, do the following.
— If (84,Tj,x) = (0,0,10), let (S;,T;) = (1,0) and finish the operation.
- If (84,Tj,x) = (0,0,01), let (S;,T;) = (0,1) and finish the operation.
— If (S,Tj,z) = (0,0,11), let (S;,Ty,x) = (0,0,11),z — z — 1. However, in case z < 0,
let (S;,T;) = (1,1) and finish the operation.
- If (Sj,Tj,.’E) =(1,0,11), let (Sj, Ty, z) = (0,1,10).
— If (Sj,Tj,ac) = (1,0,10), let (Sj, Ty, z) = (0,0, 10).
- If (S5,T,z) = (1,0,01), let (S;,T;,x) = (0,0,11),z — z — 1. However, in case z < 0,
let (S;,T;) = (1,1) and finish the operation.
— The case with (S;,T;) = (0,1) is similar.

Note that the case (S, T;) = (1, 1) never occurs (we can prove this in the same way as the proof
for swapping the order of loops). Since we can easily handle position j when (S;,T;) = (0,0), let’s
keep all j such that (S;,7T;) = (1,0),(0,1). In particular, let’s hold all such j in a stack (call the
stack A). The elements in A are sorted in the increasing order from top to bottom. Then, when we
find 4 such that S; = T; = 1, pop the first element of A and handle all (0,0) cases till the element.
In care we can really reach the first element, handle it, and go to the next element. However, when
we don’t finish the operation with (S;,T;) = (0,0), we keep this information in some array (these
values should be added to the stack later). We repeat this, and after the simulation mentioned above
finishes, we push all residues we get during the simulation. This way we can perform the simulation.

Let’s analyze the time complexity of this simulation. If we look at the algorithm above carefully,
the only case where we don’t get (S;,T;) = (0,0) after the operation is = 11. After we get
xz = 11, z will be 10 or 01. In case z = 10,01, the number of elements of A decreases, and in case
x = 11, the number of elements of A doesn’t increase. Thus, the number of elements of A decrease
in every two steps of the simulation. Also, since the number of elements of A increases only when
(S5,T5) = (0,0) (and this happens at most once for each %), this happens at most N times. Thus, we
perform operations for the stack at most 2N times. Since we can perform push/pop for a stack in
O(1), this solution works in O(N) time in total. Note that ”the number of elements in A” includes

the number of new elements added during the simulation.



