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A: Candy Distribution Again
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B: Garbage Collector
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C: ABland Yard
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D: Modulo Matrix
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E: ABBreviate
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F: Grafting

BRI IS, BEEROBAMIE N — 1 UFIA0 25T, (2 OEBEEEICEHE->TWE T4 L
IE5< O, BAE N -1 UFTHo L2 HELTEE T

r ZRE VRN ERELVLTEZET. r POEFICFHRERTVEE T, BEINRVEN u Z2RTWS L
E, HE v P AIZBVWTE BIZBWTH u ODBEFEOTHRSIE, v B EBEINZVEKTT. £5TH
WS, v IMEEINZRBERDH Y, AIZBVWTE BIZBWTH v 2B T3HMORICETNBHMAZIET
BEINZBERH O 7.

BEINDEZRELTOHENZHIZDWT, valid BRIEEEIEFPFET E20ESPEFAREL & 5. HIET
REEREILZDRSHLIZDWVT, ATBVWTET2SBIIA»-T, BIZEWTHEHE»SFIZMA->T
WEEEMATET. DFOR 3 BZY YTV 20D75r—2 1 TY. AB 2EINRVEHSAZLZHEHLT 1
DT T TIZELHDTINRBI ALY — T 52 enalfek 51F, valid BREEEEFDBEEL T, B,
(1,4,6,8,3,5) DIEFCTHMEEZTIL A Z BIZT5Z e TEET. HOBIZ ON) THASNEDT, &
AN N -1 UFOBEIE O(N?) TEZ%2RODBZILNTEET. T<20,N <50 &0 +4E#ETT.

g N : N

meanauna.,,

o / - /

3 gL 2r—x21

EROEY, HEFEBD N OBAEVFHELET. K4 13Z0FTT. BROTLVI) XALEIDT—AT
EOEHELERA (EBICRALTAZLLIWTY). ZOXIBREATH->TH 1 [0 HOERMELE EBIT
52T, BEINBWESEEDZ ZLNTEET. 1 MHOHEEAEIX ON?) @Y DT, &7 —AILD
WT O(N?) TEARRDBZENTEET. T<20,N <50 &0 +onEETT.



.
D —5)

B — A

4 BEREEDS N EIZ



AGC 027 Editorial

writer : camypaper, sugim48

September 15, 2018

A: Candy Distribution Again

In case vazl a; = x, the answer is N, otherwise the answer is NV — 1. From now on, we assume that
YL, i # .

Let S C {1,2,..., N} be asubset of children. We can satisfy all children in S if and only if )}, g a; < z.
(If this inequality holds, we can give a; candies for each child ¢ in S, and arbitrarily distribute remaining
candies among remaining children.)

Thus, our objective is to find the maximum size of S that satisfies Zie ga; < x. To do this, we first
sort a in ascending order, and compute the maximum k such that Zle a; < x. In case k = N, don’t

forget to print N — 1 instead.



B: Garbage Collector

Let’s ignore the cost of collecting trashes: since each trash will be collected exactly once, we can ignore
it and add NX at the end.

Suppose that the robot starts from the origin, takes some subset of trashes, returns to the origin, and
put all trashes it took into the trash bin. When the subset of trashes is fixed, the following strategy is
optimal: The robot first moves to the position of the most distant trash (in the subset). Then, it directly
returns to the origin. During the return trip, it takes trashes whenever it meets the trash in the subset.

The cost of doing this can be calculated as follows. Suppose that the i-th most distant trash is at

position z. Let’s define E(i,z) as

(2i + 1)z (otherwise)

E(i,z) = {E’m (i=1) (1)

The cost is the sum of E(i,x), plus X for putting trash into the bin.

In general, the movement of robot is of the following form. It consists of k phases. In each phase, the
robot starts from the origin, takes a subset of trashes, and returns to the origin.

Let’s fix the value of k. Since the cost for putting trash into the bin (kX)) is a constant, we want to
minimize the value comes from FE.

To compute the value comes from E, we multiply each coordinate by some coefficient, and take their
sum. The coefficient is 5,5,7,9,11, ... when the corresponding trash is the 1,2, 3,4, 5, .. .-th distant trash
in its phase, respectively. Clearly, this value becomes the minimum when the coefficient 5 is assigned to
the 2k most distant trashes, 7 is assigned to the next k distant trashes, and so on.

By using prefix sums, we can get this value in O(N/k) time for a fixed k. Since O(Zil 1) = O(log N),
by trying all possible values of k, we can solve the problem in O(N log N) time in total.

Note that in some values of k£ you may get values greater than the limit of 64-bit integers during

calculations. Be careful with overflow.



C: ABland Yard

Let s be the infinite repetition of the string AABB. If we can’t make s, the answer is No. If we can make
s, it turns out that we can make arbitrary strings.

Suppose that we can make s. Then, there must be a (not necessarily simple) cycle that is a repetition
of AABB. Each vertex on this cycle is adjacent to both a vertex with A and the vertex with B. Thus, by
keep moving on this cycle, we can make arbitrary strings.

There are various ways to check if we can make s. For example, we keep removing a vertex that is
adjacent to only one or zero types of vertices. If a non-empty graph remains after this process, the graph
contains s. It’s also possible to construct an extended directed graph whose vertices correspond to pairs

(the vertex in the original graph, the position in s modulo four), and check if this graph is a DAG.



D: Modulo Matrix

How can we make sure that ”max mod min” is a constant? One natural way is the following.
First, paint a N x N board like a chessboard, as in the picture 1. Write arbitrary numbers on black
cells. Then, on white cells, write " The LCM of all neighboring black cells” plus one. This way, the value

"max mod min” is always 1.

1 Chessboard

The main trouble is that, if we don’t write numbers on white cells in a right way, the LCMs can be
big and exceed the 10'® limit. We want to make sure that the LCM of four white numbers (that are
adjacent to the same black cell) is always small.

One possible way is as follows. See the following picture. A white cell is always at the intersection of
two diagonals. There are 2N diagonals in total, and we assign a small prime number on each diagonal.
The value in a white cell is the product of two primes assigned to the two diagonals passing through it.

Then, the numbers on black cells will be ”the product of four small primes” plus one, which is small
enough. (The 1000-th prime is 7919. For example, you can assign the first 500 primes to one direction,

and the next 500 primes to the other direction.)

.

2 Diagonals



E: ABBreviate

Let p(s) be the sum of all letters in s, modulo 3. Here, we assume that a is 1 and b is 2. This is an
invariant.

When can we convert a string s into a single letter ¢? It turns out that the conditions are folloing (x):

® s =c. or,

e p(s) = p(c) and s contains two adjacent same letter.

It’s clear that these conditions are necessary. Let’s prove that this is sufficient. Suppose that |s| > 2,
p(s) = p(c), and s contains two adjacent same letter (i.e., s is not like "ababab...”). Then, by observing
a few cases carefully, it turns out that we can always keep performing operations on this string until |s|
becomes 1. Since p is an invariant, when |s| becomes 1, it must be c.

We can restate the original problem as follows:

You are given a string s. Count the number of strings ¢ that satisfies the following:
By partitioning s into |¢| intervals properly, the condition (*) holds for each corresponding pair of

an interval and a letter in ¢.

Let’s fix a string ¢, and check if we can divide s into [t| parts as described above.

First, in case t doens’t have two adjacent same letters, the condition is obviously s = ¢. Otherwise,
we do this as follows. For each j =1,2,...,|t| in this order, take the shortest possible interval of s such
that the value of p(-) matches ¢;. For example, when s = aaababbabababbaaaba, t = abab, the intervals
are s = a aa babb abababb aaaba. (aaaba is the remaining part). It turns out that the condition is
equivalent to the following: we can successfully take all |¢| intervals and the p(-) value of the remaining
part is 0.

Again, it’s clear that these conditions are necessary. Let’s prove that this is sufficient. Since the p
value of the remaining part is 0, by attaching it to the last interval, we can almost always get a desired
partition. The only concern is that, this way the last part can be of the form "ababab...”. However, it’s
not hard to see that this can be avoided by properly rearranging the intervals.

We can count such ¢ by a simple DP. This solution works in O(|s|) time.



F: Grafting

Suppose that there exists a vertex r such that we never perform an operation on it (i.e., paint it black).
(It’s possible that we perform an operation on each vertex exactly once - this case is harder, and we
handle it later.)

Once we fix such r, we can get almost all information about the operations, as follows:

e Suppose that in both A, B a vertex v is adjacent to the root r. What happens if we move this
edge? First, to move this edge, we must perform an operation on v (because we are not allowed
to perform an operation on 7). Then, immediately before we span an edge between v and r again,
we must perform an operation on r again. However this means that we perform two operations
on v. Thus, we must never move the edge between r and v.

e Suppose that in both A, B a vertex u is adjacent to v (as mentioned above, it is adjacent to the
root in both trees). Then, by a similar reason, we must never move an edge between u and v. This
way, by running a DFS from the root, we can get a set of edges that must not be moved. Let’s
call them ”fixed edges”.

o If an edge between vertices a and b exists in one of the trees but not in the other tree, this edge must
be moved. All edges adjacent to ”fixed edges” we got from the DFS above satisfy this property
(otherwise more edges will be included in the set of fixed edges by DFS), so all such edges must
be moved.

e Consider two fixed edges and a path between them. All edges on the path can’t be moved because
their endpoints can’t be leaves. Thus, the set of fixed edges are connected. This means that we
now fully get the information about fixed edges: the edges we got from the DF'S are fixed, all other
edges are not fixed (and must be moved).

e If a vertex is incident to at least one fixed edge, we can never perform operations on the vertex,
because whenever it becaomse a leaf it is incident to a fixed edge. We call such vertices ”fixed
vertices”. Now we get all information about fixed edges and vertices - and by their definition, the
number of fixed edges and the number of fixed vertices are always the same.

e We can also uniquely determine ”directions”. Suppose that r is the root of both trees. In this
tree, suppose that there is an unfixed edge between x and y (and z is closer to the root). Then,
the only way to make sure that all unfixed edges are moved is to move it from ”children”, that is,

to move the edge between = and y, we must choose y as the leaf.

Now, we know which edges are moved by operations (and each edge is moved exactly once). Also, for
each edge, we know from which vertex the edge is moved. (If the parent of z is y in A and z in B, when
we perform an operation on z, we must move an edge from & — y to  — 2.) The only remaining thing
we have to decide is the order of operations.

An order of operations is valid if whenever we perform an operation on v, v is a leaf. This condition
can be restated as constraints of the form ”we must perform an operation on this vertex before on this

vertex”. If there is no cyclic dependencies among such constraints, a valid order exists.



Thus, for a fixed r, we can get the answer in O(N) time.

The following picture 3 shows the first case of sample 2.

A (B

o % o %

3 Sample 2, first case

As mentioned above, in some cases the answer is N. The picture 4 shows such an example.

To handle it, let’s try all possible valid moves for the first move - there are only O(N?) moves. If
the vertex v is painted black in the first move, we never perform operations on this vertex again in the
future. Thus, we can regard this v as the root in the case above, and we can solve it in O(N).

In total, this solution works in O(N?) time per testcase.
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4 The answer is N in this case



