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B :[0 Removing Blocks
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C : Min Cost Cycle
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D :00 Chords
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E : High Elements
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F : Reachable Cells
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A : Two abbreviations

We use 0-based indices.

Suppose that we are given an integer L that is divisible by both NV and M, and let’s check if
we can find a valid string. For each pair (a,b) such that a x L/N = b x L/M, we want to check
if S, = Tp. (The answer is possible if and only if this condition holds for all pairs.)

Let n = N/ged(N, M), m = M/g(N,M). Then, a x m = b x n must holds. Since n and m
are coprime, all possible pairs are (a,b) = (k x n,k xm) (k=0,1,...gcd(N, M) — 1).

This set of pairs doesn’t depend on the value of L. Thus, in case the answer is not impossible,
the answer is L = lem(N, M).

This solution works in O(N + M) time.



B :[0 Removing Blocks

Let’s compute the expected value of the total score (when we choose the order of removals
uniformly at random).

Let P(i,7) be the probability such that the blocks ¢ and j are connected, when we remove
block i. Then, for each j, we compute the value B; := Zf\il P(i,7). This is the expected number
of times the value A; is added to the total score. Thus, the answer is the sum of A;B; for all j.

Notice that P(%,j) happens if and only if the first block that is removed among the blocks
i,i+1,..., 7 is the block i. Thus, P(i,j) == 1/(abs(i — j) + 1).

If we compute the values 1/1, 1/2, 1/3, ... 1/N (in modulo 10° + 7) and their prefix sums,
we can compute each B; in O(1).

This solution works in O(N) time.



C : Min Cost Cycle

Instead of assigning the cost min(A,, By) to the edge from z and y, let’s add two edges with
costs A, and B, (and we can choose whichever we want). This doesn’t change the problem.
Let’s fix a Hamiltonian Cycle of the graph. There are four types of vertices. The type of a

vertex v is classified as follows:

e Type X. O The cost of the outgoing edge from v is A,. The cost of the incoming edge to

vis B,.

e Type Y. O The cost of the outgoing edge from v is A,. The cost of the incoming edge to

v is not B,,.

e Type Z. O The cost of the outgoing edge from v is not A,. The cost of the incoming edge

to v is B,.

e Type W. O The cost of the outgoing edge from v is not A,. The cost of the incoming edge

to v is not B,.

Here, for example, ”The cost of the outgoing edge from v is not A,” means that if the edge
goes to a vertex w, we use B, instead.

If we decide the types of all vertices, we can compute the cost. Thus, we want to decide all
valid assignments of types to vertices.

Let’s color the edges along the cycle. We color it red if its cost correponds to A (of its source),
and color it blue if its cost corresponds to B (of its sink). If we follow the cycle, we get N pairs
of two consecutive edges. Depending on the colors of the two edges, there are four types of two
consecutive edges, and those four types correspond to the four types of the vertex in the middle.

There are three cases:

e All edges along the cycle are red.
e All edges along the cycle are blue.

e The cycle contains both red and blue edges. In this case, the numbers of (red, blue) pairs
and (blue, red) pairs must be the same and non-zero, but except for that we can arbitrarily

decide the frequencies of the four types.
In word of the vertex types, these are:

o All vertices are of type Y.
e All vertices are of type Z.

e The number of vertices of type X and type W are the same, and they are nonzero.

It’s easy to compute the cost of the first two cases, so let’s compute the optimal cost of the
third case.
Let’s sort the values Aj, As,...An, By, Ba,...By in the increasing order. We want to choose

N of these, but we must make sure that for some i, we choose both A; and B;. Let’s fix such i,



and choose N — 1 smallest elements except for them. Basically, this is the sum of the first N —1
numbers of the sorted array, but in case this part contains A; or B;, we must remove them and
add next elements instead. However, since there are at most two replacements, we can always
do it in constant time.

This solution works in O(NlogN) time (sorting is the slowest).



D :00 Chords

Let dp[i][j] be the number of ways to make pairs, such that there exists a connected component
whose minimum is ¢ and maximum is j. (A connected component contains a set of points, and
we consider their minimum index and maximum index.) Then, the answer is the sum of these
values.

Let X be the set of points with indexes i,...,7j, and Y be the set of all other points. First,
we must not connect a point in X and a point in Y. If there are x unpaired points in X and y
unpaired points in Y, the number of such pairings is g(z)g(y), where g(z) = (z—1)x (xz—3)x---x1
is the number of ways to make pairs among « things (or g(z) = 0 if = is odd).

In all such pairings, we can find a connected component whose minimum is ¢. However, there
may be some k(i < k < j) such that there is a connected component whose minimum is ¢ and
maximum is k, and the component doesn’t have j. We need to subtract the number of such
pairings. The number of such pairings is dp[i|[k] X g(2) X g(y), where z is the number of unpaired
points among points k+1,..., 7.

If we fill the dp[i][j] table in the increasing order of j — i, we can compute all these values.
This solution works in O(N?3) time.



E : High Elements

In order to find the lexicographically smallest good string, we want to check if a certain string
can be a prefix of a good string. Suppose that we appended some first elements of P to X
and Y, and currently, the number of high elements are C'x,Cy, and the maximum elements are
Hx, Hy, respectively. (In case X is empty, Hx = —1.) We want to check if we can make the
number of high elements in X and Y same by assiging the remaining elements properly.

Suppose that after assigning the remaining elements, the high elements of X are ..., Hx, a1, a2, ..a|q|

and the high elements of Y are ..., Hy, b1, b2, ...bj|. They must satisfy the following conditions:
e Hy <ay <~~~<a‘a|,Hy <b < "‘<b\b|
e Cx +a] =Cy + |b|

e All high elements in P (in the ”"remaining” part) are included in a or b. This is because a

high element in P will always be a high element in the new sequence.

These conditions are also necessary, that is, if we can find such a and b, we can find a good
assignment. We shuold carefully assign remaining elements that are not in a or b such that they
don’t become high elements in new sequences (and this is always possible). Thus, we want to
determine if such a and b exist.

We can also assume that one of the following holds:
e All elements in a are high elements in P.
e All elements in b are high elements in P.

If none of the above two holds, we can remove one non-high element each from a and b, and still
keep the conditions above. Thus, assume that the former holds (we should also try the latter
case, but it works in the exactly same way.)

Let @ be the number of high elements among ”the remaining elements”. If we decide b, we
can automatically decide a because a must be the set of all high elements that are not chosen in
b (and as we described above, we assume that all elements in a are high in P). The conditions

can be rewritten only using b:
o Hy < b <"'<b|b‘

o OUx +Q — k= Cy +1b|. Here, h is the number of high elements in () that are included in
k.

We can even simplify the second condition. Let m be the number of non-high elements in
@ that are included in m (i.e., m = |b| — k). Then, the second condition is equivalent to
2xk+m=Cx —Cy+0Q.

In words, we are given a sequence and a constant. Some elements of the sequence are marked
as ”1 point” and others are marked with 72 points”. We want to check if the seqeunce contains
a increasing subsequence whose total points is exactly the given constant.

Notice that if there is an increasing subsequence whose total points is ¢+ 2, we can also achieve

exactly ¢ points (by removing some points). Thus, to check if we can achieve exactly ¢ points,



we just need the maximum points we can get, with the same parity as ¢. We can compute it
by a DP with a simple segment tree (similar to the computation of LIS). If we do the DP from
right to left and keep the DP table, we can answer these questions for all suffixes of P.

This solution works in O(NlogN) time.



F : Reachable Cells

We assume that digits on all cells are 1, since it does not matter much.

Suppose we are given H by W board and let U be the upper half of the board and L be the
lower half. We are going to count the number of pairs of cells (c1, ¢2) such that ¢; € U, ¢o € L and
co can be reachable form ¢; in O(HW) time. Using Divide and Conquer, the original problem
can be solved in O(N2logN) time.

Let’s assume H > W. Define U(i, j) as the cell of U at the i-th row from the top and the j-th
column from the left. Define L(4,j) similarly. Let Hy and Hj, be the number of rows of U and

L respectively. We prepare following functions:

e MeetingPoint(a,b) : returns the minimum row number of a cell which can be reachable

from both L(1,a) and L(1,b) (returns oo if no such cell exits). O(1) time per query.

e BothReachable(a,b,r) : returns the number of cells which can be reachable from both

L(1,a) and L(1,b) whose row number is at most r. O(1) time per query.

e Reachable(a) : returns the number of cells which can be reachable from L(1,a).

Let Left(i,7) be the minimum x such that L(4,j) can be reachable from L(1,z) (or oo if no
such z exists). Similarly, let Right(i,j) be the maximum x such that L(i,j) can be reachable
from L(1,z) (or —oo if no such z exists). Let Top(j) be the minimum y such that U(Hy, j) can
be reachable from U(y,x) for some z. Similarly, let Bottom(j) be the maximum y such that
L(y,x) can be reachable from L(1, ) for some z.

We can calculate, for every a < b, the minimum ¢ such that Left(i,j) < a < b < Right(i,j) by
dynamic programming. Let L(p, ¢) be a cell which achieves minimum ¢. If p > min(Bottom(a), Bottom(b)),
obviously M eetingPoint(a,b) = co. Otherwise, since a path from L(1, Left(p,q)) to L(p,q) or a
path L(1, Right(p,q)) to L(p, q¢) must intersect a path from L(1,a) to L(Bottom(a), z) for some
x, L(p, q) can be reachable from L(1,a). Similarly, L(p, q) can be reachable from L(1,b). Since
MeetingPoint(a,b) > p, we get MeetingPoint(a,b) = p. Now we have MeetingPoint(a,b).
Precalculation requires O(HW) time and one quiery takes O(1) time.

Let’s move on to BothReachable(a,b,r). If MeetingPoint(a,b) > r, the return value is 0.

Otherwise, we want to count the number of cell (y, z) that satisfy:
o Left(y,z) < a <b< Right(y,z)
o y<r
The first condition is equivalent to the following;:
1. add the number of L(y, z) such that Left(y,x) < Right(y,x)
2. subtract the number of L(y,x) such that Right(y,x) <b
3. subtract the number of L(y,x) such that a < Left(y, z)

4. add the number of L(y,x) such that a < Left(y,x) < Right(y,z) <b



r and we can count the
Right(y,z) < b implies

Conditions 1, 2, and 3 can be combined with the condition y <
number by prefix sums. For condition 4, since a < Left(y,z) <
y < MeetingPoint(a,b) < r, we can count the number also by prefix sums. Now we have
BothReachable(a,b,r). Precalculation requires O(HW + W?) = O(HW) time and one quiery
takes O(1) time.

Reachable(a) can be calculated by BothReachable(a,a, Hp,).

We have prepared all the subroutines. Assume we are given a constant y. We are going to
count the number of pairs of cells U(y,z) and L(i,j) such that L(4,j) can be reachable from
U(y,z) in O(W) time.

We ignore a cell U(y, z) we can not reach U(Hy, j) for any j. Let Min(x) be the minimum j
such that U(Hy, j) can be reachable form U(y, x). Similarly, Let Max(x) be the maxmum j such
that U(Hy, j) can be reachable from U(y,z). It is easily seen that both Min(z) and Maz(x)

monotonically increase as a value of x. Now we are going to solve the following problem:

\
Let S be a set of cells. Initially, S is empty. Process O(W) queries of following types in
O(W) time.

e Add D(1,7) to S. It is assumed that D(1, j) is on the right of cells that were previously
added.

e Erase D(1,7) from S. Tt is assumed that D(i, j) is the leftmost cell in S.

e Count the number of cells which can be reachable from at least one cell in S.

J/
Let has[j] (D(1,7) € S) be the number of cells which can be reachable from D(1,j) which
cannot be reachable from D(1,j’) for all j < j', D(1,5') € S. If we can maintain values of

has[j], it is easy to answer to a query of the third type. In processing a query of the second type
values of has[j] do not change. So we focus on a query of the first type.

Assume we are going to add D(1,j) to S. Clearly, has[j] = Reachable(j). Forall j/ < j, j/ € S,
if there exists a j such that j” € S, j' < j” < j, Bottom(j') < Bottom(j"), the value of has[j']
does not change. Let J; < Jy < ... < Ji be the list of j's such that has[j’] can be changed (that
is, no j satisfies the condition above). It is easily seen that Bottom(J;) > Bottom(J3) > ... >
Bottom(Jy). The value of has[Jy] decreases by BothReachable(Jy, j, min(Bottom(Jy), Bottom(35))).
For all p < k, the value of has[J,,| decreases by BothReachable(J,, j, min(Bottom(J,), Bottom(j)))—
BothReachable(J,, j, min(Bottom(Jpt1), Bottom(j))). If, for some p, Bottom(J,) > Bottom(j)
holds, has|q] does not change for all ¢ < p. Since J, for all p such that Bottom(J,) < Bottom(j)
does not appear in the list again, O(W) queries can be processed in O(W) time.



