AGC 028 O O

writer : maroonrk

OO 300100130

For International Readers: English editorial starts from page 8.

A : Two abbreviations

0000000000 0-indexedDOOOOOOOOO LO lem(N,M)OOOOOO

gob0Lo0bdobobobooboobooboobobooobDooboobUoobobdbae x
L/N=bxL/MO0OO0O00O0O «b00000S,=7,0000000000000000000
S,=7,000000000000000000000D0000000 «,b0000 S,=T7,00
gbooooooooo

n=N/gcd(N,M), m=M/g(NM)OOOOOaxm=bxn0O0 eb0000000000
n,m 0000000000000 (a,b) = (kxnkxm) (k=0,1,..g¢d(N,M)—1) 00000
gbooooog

LO000000000 @,b000000000OO0O0OOOOOOOOO L=lIlem(N,M)0O
ggoooooobda

0000000000 ON+M)ODOOOOOO

B :[0 Removing Blocks

0000000000 mod10°+7000000000med 000000000000000
00000000000000

0000+00000000000040; 000000000 P(,)00000000000
j00000YY,PG,/)0000000000

000D0:00000000000040,;0000000000000000040 ;000
000000000004, j0000000000000000000000000:00000
0000000000P(,j) =1/(abs(i—j)+1) 0000000

1/1,1/2,1/3, .. 1/N OODOO0ODO0OO0O0OOOYN, P(,j)000 0000000000
00000000000000O(N)00000000

C : Min Cost Cycle

oooooo men(4,,B,)00000000A4,0 B,00000000OO0O0OO0ODOOO
googooog
o00D400000000000000»0000000D0O0O000D0O0O00OO

e 10 XOUODDOOUUDDOOwODODODUOUODDOO A, 000DOCOvOODOODDOO
B, 000000

e 000 YODOOOODODODODDYOOOUUOUUOUOUOD A, 00000O0vOOOOOODOO
B, 0000000

e 000 ZOODDODDODOODOvODOOOOOOOD 4, 00000000b00000000
B, 000000

e 000 WOHIOOOOOOOODOvOODOODODODODODO A, 000000O0vOODODOOOO
OB, 0000000

gbobooooboooboobooboobooboooooboooboooobooobooboboOooon
ogboooo3ooooo

e JOODODOOO YO
e JOODOODODO ZDO

e 00 XDOOOOODOOODOOWOOOOOOD 1O0ODODOOOOD

1000 200000000000000000000300000000000000000
00000000000000

A1, As,..Ay,B1,B,,..By 00000000000 00000C00O0 NOOOO 4,0 B, O
000000002000 00000O0O0 NOOOODOODOOOOOO000000000000
0000000000000000 NOOOOOOOOOO000O

00000000000 WOOOO0O0O0O0OO00 10000000000 N-10000000
00000000000000000000000000000000000

00 Ay, As,...An,B1,B,,..ByO00O000000000000000 NODODOO A,0 B, O
00000000 vO0O00OO0O000O0O000000 WOODO w0O0000000000000
00000000000 NOOO A,000 B,000000O0ON+100000 N+200
ON+1000 4,000 B,000 N+20000000000000000

000000000000000000000000000000000000 O(NlegN)OOO

D :00 Chords

000000000000000000

dplij]=0400000 ;00000000000000000000 [;,]00000000
000000 DPOOOOO

[i,/]00000000 [,/]00000000000000000000dp[i]jj]=0000
00000000[]0000000000000000000000 f(,5)00000£(3G,5)
00000 dpfi]ljl=0000
00000000[,;]0000000000g(,4) = (f(,7) —1) x (f(i,5) —3) x ... x 100
00000000000:00000000000000,;000000000000dp[[j]00
0000000i000000000000000 A000000000dp[ik] xgk+1,5)0
ooooo

000 DPOOOOONODDOOOOOODDOOODDO QN3 OO0

E : High Elements

SO0O000000000000000O000 X,YOOOOOOOO Cx,Cy00000000
Hx,Hy0ODOOOOOOOOOOOOSOOOOOOOOOO0OOO0OO0O000000000000
0000000000000000O0

00000000 SO000000000000000000X00000 ..., Hx,a1,az2,..a;40
YOOOOO ...,Hy,bi,bs,..bp 0000000000000 0a,b000000000PO0OD
000000000000 000000000 b00000 POOOOOOOOOOOOOO
00000000000000POOOOO0OOOODOOOODOOOOOOO0O

000000e0 POOOOOOOOOOOOCOOOOOOOOOOOOOOO 00000
00000000000b0000000 POOOOOOOOOOOOOMPOOOOOO
00000000000000000000000000000 QOO000L0 POOOOO
00 k000D0POOOOOOOOO mOOOOOOOOOOOOeO0O00O0 Q-kO000OS
0000000000 0000Cx+]e/=Cy +p|00000000000O0O0OOOOOOO
Ixk+m=Cx—Cy+QO00000

0000000000000000O0O0O07T000000000000000000000000
000000000000000PO00O000O0O0000000000000 b= (by,ba,....b5m)
ooooo

e Hy <bi <by .. <bk+m

e VJIODO POODDOOUOOD KOODDOOUOODDO mODDOO2xkE+m=T

gooooooooooooooo

000002xk4+m>T00 2xk+m=Tmod200 b000002xk+m=T00 00
O00000002xk+mO2000000000000000000moed200002xkE+m
gbo0ooOOobOoooOooOooooood

000000 pPO0ODOODOO LISOOODOODOODOOOCO DPODOODOOOODOOOO
0o00o00o0oO0dDOO0DOO0o0oo0ooooDoDooooo0ooDOooDoooooooooooo
SegmentTree 0000000000000

00000000 O(NlegN)DOQOOGOO

F : Reachable Cells

000
000000000000000000000000000000000000000 X0000O
0YOOOOOOD X,YOOOOOOOOOOOOOO0OO0OO0O0O0RxwWOO000000o
0000000 OEHW)00000000000000 O(N2egN)0OOO0D0000

00000000000000000000000 X,YOOOOOOOOO0oo0ooooodo
00000000000MO00000000U00000000400 000000 UG,j5)
0000000000000 H,000000000000000000DO0000000 i
00000000 D(,j)00000000 POO0O0 HpO0OOOOOOOO0O0O000000O
0o0ooooo

e MeetingPoint(a,b)0 D(1,¢),D(1,) 00 0000000000000000000000
000000000000 000 0(1)000000

e BothReachable(a,b,1)0 D(1,a4),D(1,b) 0000 0000000000000000000
/1000000000 0(1)000000

0 D(i,j) 00000 Left(i,j) D0D(1,z)00 D(G,j) 00000000000 000000
000000 000000000000 Right(i,j)00D(1,z)00 D(,7)000000000
00 2000000000000 —0o000000000007T0p(j)00U(y,x) 00 U(Hy,)
00000000000 yOOOOODO0O00000000 Bottom(j) 00 D(1,5) 00 D(y,)
uboooobobobooybOoo0oobooboog

00 min 0 DP 00000 Left(i,j) < a,b < Right(i,7) 00 D(i,j) 0000 i000000
00000000000000000 D(p,q) J00000000p < min(Bottom(a), Bottom(b))
00000 MeetingPoint(a,b) = p0 00 Left(p, q), Right(p, q), Bottom(a), Bottom(b) D 00 O
000000000000D(p,q)0 D(1,¢),D(1,6)00000000000000000000

000p > min(Bottom(a), Bottom(b)) D0 000000 MeetingPoint(a,b) = co 0000
00000 MeetingPoint(a,b) D0 00000000000000 O(HW)ODOODO O(1)000

00 BothReachable(a,b,l) 000000000 MeetingPoint(a,b) > 0000000000
obobooooboobooooad

e Left(y,x) <a
e b < Right(y,x)
o y<|

0000 (y,2) 0000000000000 0O0000000O00OOOO0OO0OO0OO0OOOO
gooo

e 1000000 Left(y,z) < Right(y,2)00 000000 co0 00000 (y,2) 00000
0000000000000 Left(y,z) < Right(y,2) 00000000000000000

e Right(y,z)<b000 (y,2)00000000000000

e a<Left(y,z)000 (y,2) 0000000000000

e a < Left(y,x) < Right(y,z) <b000 (y,2) 0000000000000

0030000000y <I0O00000000O0DOO0ODODO0ODOODOOOOODOOOOn
O00Oa < Left(y,xz) < Right(y,z) <b0O000000000O y < MeetingPoint(a,b) 00
0000000000000 0000O000O0000000OO0nO MeetingPoint(a,b) <100
000000000 Oa < Left(y,z) < Right(y,2) <b000 ¢y <!000000000000
400000000y 0000000 0ODO0OD0O0ODODDO0ODODDODO0ODODODOODODDODOUODODOO
0000 OHW +W?) =0HW)ODODH<WOOMDOODO000D00 O(1)000

0000000000000 M Reachable(a) = D(1,a) 0000000000000 O(1)0
ggooogooooon

0000000000000 0000000 1<y<HyO0OOODOOX=U(y,2)0Y = D(i,5)
00000XO00YOOoOoOoooo Xx,yooooow)oooooo

L(z)00U(y,z) 00 U(Hy,j) 000000000 j00000000 cc0000000000
O0R(z)00U(y,2) 00 U(Hy,j) 000000000 00000000 —0o00000000

O000L,ROOOD 00000000000 DOOD0DOOODO0ODOOODODOOODOOO
gooooo

00000 SO00000o00O So0oo0osSUoooUooUooUooUoooo()oo
oood

e SO D(1,/)0000000000OOO0OD jUOU000DODODOODOD jOU0DOOOO

e SO0 D(1,;) 000000000 OOOUD jUO0SODUOODDOOOO jUO0O0OOOO

e SOOUUDODOOUODOOUODOODOUODODOUDDODO
\ %

haslj]0 D(1,j)0000000000S00000000 D(1,5) (j<4)00000000
000000000000SO000000000000 hesfj]CO000O00OOOOOOOOOOO
00000 heslj]00000000DO0O0DOOO0ODOOOOOOO

00 SO0 D(1,;)000000000000000000 has|j] = Reachable(j) 0000000
0O D(1,5) € SO000 00O Bottom(j') < Bottom(j”") 00 7€ SO000000has[']0000
0000D00000D(L,4)0 D(L,/)0000000000000000000000 D(1,5)
00000000000 Res)y] 0000000000 ODOO0O0O0O0UOOODResf]OOO0O0ODO
000 j/00Bottom(j)0000000000O0OO0OOOO Bottom(j') 000000000
05/ 00J;<Jy<..<J, 00000 has]Jg] OO BothReachable(Jy, j, min(Bottom(Jy, 7)) O
00000000000p< kOO0 pO0O00DResp]000000D0000O0O0OD(®,J,)0
D(1,j)00000000000000D(,J,)(p<¢0000000000000000000
0 D(,J,)0 D(1,j/)000000000000000000 Bottom(Jpy:) 000000000
00000000000 BothReachable(Jy, j, min(Bottom(J,), Bottom(j)))
—BothReachable(Jyp, j, min(Bottom(Jp+1), Bottom(j))) O O 00 O O O OBottom(J,) > Bottom(j)
000D0000hasl,) (<p)00000000000000000D0000 has|J,) 000
000000 Bottom(J,) < Bottom(j) D0 pO0O00 +1 0000 Bottom(J,) < Bottom(j) O O
J,000000000D00bO0ooOowoooooooooooo ow)oooooooooo
ggo

gobooobgoboboobooog

AGC 028 Editorial

writer : maroonrk

00300120 230

A : Two abbreviations

We use 0-based indices.

Suppose that we are given an integer L that is divisible by both NV and M, and let’s check if
we can find a valid string. For each pair (a,b) such that a x L/N = b x L/M, we want to check
if S, = Tp. (The answer is possible if and only if this condition holds for all pairs.)

Let n = N/ged(N, M), m = M/g(N,M). Then, a x m = b x n must holds. Since n and m
are coprime, all possible pairs are (a,b) = (k x n,k xm) (k=0,1,...gcd(N, M) — 1).

This set of pairs doesn’t depend on the value of L. Thus, in case the answer is not impossible,
the answer is L = lem(N, M).

This solution works in O(N + M) time.

B :[0 Removing Blocks

Let’s compute the expected value of the total score (when we choose the order of removals
uniformly at random).

Let P(i,7) be the probability such that the blocks ¢ and j are connected, when we remove
block i. Then, for each j, we compute the value B; := Zf\il P(i,7). This is the expected number
of times the value A; is added to the total score. Thus, the answer is the sum of A;B; for all j.

Notice that P(%,j) happens if and only if the first block that is removed among the blocks
i,i+1,..., 7 is the block i. Thus, P(i,j) == 1/(abs(i — j) + 1).

If we compute the values 1/1, 1/2, 1/3, ... 1/N (in modulo 10° + 7) and their prefix sums,
we can compute each B; in O(1).

This solution works in O(N) time.

C : Min Cost Cycle

Instead of assigning the cost min(A,, By) to the edge from z and y, let’s add two edges with
costs A, and B, (and we can choose whichever we want). This doesn’t change the problem.
Let’s fix a Hamiltonian Cycle of the graph. There are four types of vertices. The type of a

vertex v is classified as follows:

e Type X. O The cost of the outgoing edge from v is A,. The cost of the incoming edge to

vis B,.

e Type Y. O The cost of the outgoing edge from v is A,. The cost of the incoming edge to

v is not B,,.

e Type Z. O The cost of the outgoing edge from v is not A,. The cost of the incoming edge

to v is B,.

e Type W. O The cost of the outgoing edge from v is not A,. The cost of the incoming edge

to v is not B,.

Here, for example, ”The cost of the outgoing edge from v is not A,” means that if the edge
goes to a vertex w, we use B, instead.

If we decide the types of all vertices, we can compute the cost. Thus, we want to decide all
valid assignments of types to vertices.

Let’s color the edges along the cycle. We color it red if its cost correponds to A (of its source),
and color it blue if its cost corresponds to B (of its sink). If we follow the cycle, we get N pairs
of two consecutive edges. Depending on the colors of the two edges, there are four types of two
consecutive edges, and those four types correspond to the four types of the vertex in the middle.

There are three cases:

e All edges along the cycle are red.
e All edges along the cycle are blue.

e The cycle contains both red and blue edges. In this case, the numbers of (red, blue) pairs
and (blue, red) pairs must be the same and non-zero, but except for that we can arbitrarily

decide the frequencies of the four types.
In word of the vertex types, these are:

o All vertices are of type Y.
e All vertices are of type Z.

e The number of vertices of type X and type W are the same, and they are nonzero.

It’s easy to compute the cost of the first two cases, so let’s compute the optimal cost of the
third case.
Let’s sort the values Aj, As,...An, By, Ba,...By in the increasing order. We want to choose

N of these, but we must make sure that for some i, we choose both A; and B;. Let’s fix such i,

and choose N — 1 smallest elements except for them. Basically, this is the sum of the first N —1
numbers of the sorted array, but in case this part contains A; or B;, we must remove them and
add next elements instead. However, since there are at most two replacements, we can always
do it in constant time.

This solution works in O(NlogN) time (sorting is the slowest).

D :00 Chords

Let dp[i][j] be the number of ways to make pairs, such that there exists a connected component
whose minimum is ¢ and maximum is j. (A connected component contains a set of points, and
we consider their minimum index and maximum index.) Then, the answer is the sum of these
values.

Let X be the set of points with indexes i,...,7j, and Y be the set of all other points. First,
we must not connect a point in X and a point in Y. If there are x unpaired points in X and y
unpaired points in Y, the number of such pairings is g(z)g(y), where g(z) = (z—1)x (xz—3)x---x1
is the number of ways to make pairs among « things (or g(z) = 0 if = is odd).

In all such pairings, we can find a connected component whose minimum is ¢. However, there
may be some k(i < k < j) such that there is a connected component whose minimum is ¢ and
maximum is k, and the component doesn’t have j. We need to subtract the number of such
pairings. The number of such pairings is dp[i|[k] X g(2) X g(y), where z is the number of unpaired
points among points k+1,..., 7.

If we fill the dp[i][j] table in the increasing order of j — i, we can compute all these values.
This solution works in O(N?3) time.

E : High Elements

In order to find the lexicographically smallest good string, we want to check if a certain string
can be a prefix of a good string. Suppose that we appended some first elements of P to X
and Y, and currently, the number of high elements are C'x,Cy, and the maximum elements are
Hx, Hy, respectively. (In case X is empty, Hx = —1.) We want to check if we can make the
number of high elements in X and Y same by assiging the remaining elements properly.

Suppose that after assigning the remaining elements, the high elements of X are ..., Hx, a1, a2, ..a|q|

and the high elements of Y are ..., Hy, b1, b2, ...bj|. They must satisfy the following conditions:
e Hy <ay <~~~<a‘a|,Hy <b < "‘<b\b|
e Cx +a] =Cy + |b|

e All high elements in P (in the ”"remaining” part) are included in a or b. This is because a

high element in P will always be a high element in the new sequence.

These conditions are also necessary, that is, if we can find such a and b, we can find a good
assignment. We shuold carefully assign remaining elements that are not in a or b such that they
don’t become high elements in new sequences (and this is always possible). Thus, we want to
determine if such a and b exist.

We can also assume that one of the following holds:
e All elements in a are high elements in P.
e All elements in b are high elements in P.

If none of the above two holds, we can remove one non-high element each from a and b, and still
keep the conditions above. Thus, assume that the former holds (we should also try the latter
case, but it works in the exactly same way.)

Let @ be the number of high elements among ”the remaining elements”. If we decide b, we
can automatically decide a because a must be the set of all high elements that are not chosen in
b (and as we described above, we assume that all elements in a are high in P). The conditions

can be rewritten only using b:
o Hy < b <"'<b|b‘

o OUx +Q — k= Cy +1b|. Here, h is the number of high elements in () that are included in
k.

We can even simplify the second condition. Let m be the number of non-high elements in
@ that are included in m (i.e., m = |b| — k). Then, the second condition is equivalent to
2xk+m=Cx —Cy+0Q.

In words, we are given a sequence and a constant. Some elements of the sequence are marked
as ”1 point” and others are marked with 72 points”. We want to check if the seqeunce contains
a increasing subsequence whose total points is exactly the given constant.

Notice that if there is an increasing subsequence whose total points is ¢+ 2, we can also achieve

exactly ¢ points (by removing some points). Thus, to check if we can achieve exactly ¢ points,

we just need the maximum points we can get, with the same parity as ¢. We can compute it
by a DP with a simple segment tree (similar to the computation of LIS). If we do the DP from
right to left and keep the DP table, we can answer these questions for all suffixes of P.

This solution works in O(NlogN) time.

F : Reachable Cells

We assume that digits on all cells are 1, since it does not matter much.

Suppose we are given H by W board and let U be the upper half of the board and L be the
lower half. We are going to count the number of pairs of cells (c1, ¢2) such that ¢; € U, ¢o € L and
co can be reachable form ¢; in O(HW) time. Using Divide and Conquer, the original problem
can be solved in O(N2logN) time.

Let’s assume H > W. Define U(i, j) as the cell of U at the i-th row from the top and the j-th
column from the left. Define L(4,j) similarly. Let Hy and Hj, be the number of rows of U and

L respectively. We prepare following functions:

e MeetingPoint(a,b) : returns the minimum row number of a cell which can be reachable

from both L(1,a) and L(1,b) (returns oo if no such cell exits). O(1) time per query.

e BothReachable(a,b,r) : returns the number of cells which can be reachable from both

L(1,a) and L(1,b) whose row number is at most r. O(1) time per query.

e Reachable(a) : returns the number of cells which can be reachable from L(1,a).

Let Left(i,7) be the minimum x such that L(4,j) can be reachable from L(1,z) (or oo if no
such z exists). Similarly, let Right(i,j) be the maximum x such that L(i,j) can be reachable
from L(1,z) (or —oo if no such z exists). Let Top(j) be the minimum y such that U(Hy, j) can
be reachable from U(y,x) for some z. Similarly, let Bottom(j) be the maximum y such that
L(y,x) can be reachable from L(1,) for some z.

We can calculate, for every a < b, the minimum ¢ such that Left(i,j) < a < b < Right(i,j) by
dynamic programming. Let L(p, ¢) be a cell which achieves minimum ¢. If p > min(Bottom(a), Bottom(b)),
obviously M eetingPoint(a,b) = co. Otherwise, since a path from L(1, Left(p,q)) to L(p,q) or a
path L(1, Right(p,q)) to L(p, q¢) must intersect a path from L(1,a) to L(Bottom(a), z) for some
x, L(p, q) can be reachable from L(1,a). Similarly, L(p, q) can be reachable from L(1,b). Since
MeetingPoint(a,b) > p, we get MeetingPoint(a,b) = p. Now we have MeetingPoint(a,b).
Precalculation requires O(HW) time and one quiery takes O(1) time.

Let’s move on to BothReachable(a,b,r). If MeetingPoint(a,b) > r, the return value is 0.

Otherwise, we want to count the number of cell (y, z) that satisfy:
o Left(y,z) < a <b< Right(y,z)
o y<r
The first condition is equivalent to the following;:
1. add the number of L(y, z) such that Left(y,x) < Right(y,x)
2. subtract the number of L(y,x) such that Right(y,x) <b
3. subtract the number of L(y,x) such that a < Left(y, z)

4. add the number of L(y,x) such that a < Left(y,x) < Right(y,z) <b

r and we can count the
Right(y,z) < b implies

Conditions 1, 2, and 3 can be combined with the condition y <
number by prefix sums. For condition 4, since a < Left(y,z) <
y < MeetingPoint(a,b) < r, we can count the number also by prefix sums. Now we have
BothReachable(a,b,r). Precalculation requires O(HW + W?) = O(HW) time and one quiery
takes O(1) time.

Reachable(a) can be calculated by BothReachable(a,a, Hp,).

We have prepared all the subroutines. Assume we are given a constant y. We are going to
count the number of pairs of cells U(y,z) and L(i,j) such that L(4,j) can be reachable from
U(y,z) in O(W) time.

We ignore a cell U(y, z) we can not reach U(Hy, j) for any j. Let Min(x) be the minimum j
such that U(Hy, j) can be reachable form U(y, x). Similarly, Let Max(x) be the maxmum j such
that U(Hy, j) can be reachable from U(y,z). It is easily seen that both Min(z) and Maz(x)

monotonically increase as a value of x. Now we are going to solve the following problem:

\
Let S be a set of cells. Initially, S is empty. Process O(W) queries of following types in
O(W) time.

e Add D(1,7) to S. It is assumed that D(1, j) is on the right of cells that were previously
added.

e Erase D(1,7) from S. Tt is assumed that D(i, j) is the leftmost cell in S.

e Count the number of cells which can be reachable from at least one cell in S.

J/
Let has[j] (D(1,7) € S) be the number of cells which can be reachable from D(1,j) which
cannot be reachable from D(1,j’) for all j < j', D(1,5') € S. If we can maintain values of

has[j], it is easy to answer to a query of the third type. In processing a query of the second type
values of has[j] do not change. So we focus on a query of the first type.

Assume we are going to add D(1,j) to S. Clearly, has[j] = Reachable(j). Forall j/ < j, j/ € S,
if there exists a j such that j” € S, j' < j” < j, Bottom(j') < Bottom(j"), the value of has[j']
does not change. Let J; < Jy < ... < Ji be the list of j's such that has[j’] can be changed (that
is, no j satisfies the condition above). It is easily seen that Bottom(J;) > Bottom(J3) > ... >
Bottom(Jy). The value of has[Jy] decreases by BothReachable(Jy, j, min(Bottom(Jy), Bottom(35))).
For all p < k, the value of has[J,,| decreases by BothReachable(J,, j, min(Bottom(J,), Bottom(j)))—
BothReachable(J,, j, min(Bottom(Jpt1), Bottom(j))). If, for some p, Bottom(J,) > Bottom(j)
holds, has|q] does not change for all ¢ < p. Since J, for all p such that Bottom(J,) < Bottom(j)
does not appear in the list again, O(W) queries can be processed in O(W) time.

