|

AtCoder Grand Contest 041 fi#Et

writer: tourist

2019 4 12 H 28 H

For International Readers: English editorial starts on page 9.

A: Table Tennis Training

A, B OFBFAL THIUE, 1 AHZTRTORAGTRILLEET . 2 AHEBA LGS 2 & T
T CoBE, 2 AN B2 59 FRICAUETHRZ 7,

A B OMENRRLRZELEL &I, 2 ADRDEIERT 220 T, BED &) sETIREDIT
T2, ACHETHEZ XY A,

Harz iRy 21cix, 51 AT 2205 N THIET 2 L2250 $XA. RO 2D DEHD A
i acd,

o 1 AHPH 1 $TBHEL, 22T 1 HLTH6 2 AHBWSHICHED? ), 2 AHIZ, 1T A
Hiea) £CH 1 OIS LT 5,

e 2 AHDH N $TBEHL, 22T 1 KL THS 1 AHPWBGICHED? ), 1 AHIZ, 2
ANHEHE ) $TH N OFICBH LT 5,

EoT, BELRANDT T v FEIZ
min(A — 1, N — B) + 1+ 8=4=1

TY, 22T, min(A—1,N—B) iZ2 AOEL 5036 1, N OV TNpIcFET 2 DI %k
BANDT7 7Y R 1 BETEREST 277 P B BEFoRERIC 2 AR 0T
Ty (2 AORIDHEEOYy) 2HELET,



B: Voting Judges

—WEEERR) e AL > Ay > > Ay EIRELET, WA a7 A; TH 2 HEIRA X
NDAREVED D 2556, ZNX DR a 73 E OITES R S 2 laEMED S 5 2 L ITIEH L T,
TOREEHVEL X9, X FHICHMZ 2 7 ECREICRH S 2 /Rt H 2 02 HET 5 2
EWX D ET,

X <P DA, TRTOT vy PHME1,2,..., P ICHRETIUIE X 3FRHINET,

Ax + M < Ap B4, ME X ICBRASh 3RS D XA,

FEMADEA, B X BRAINZ0IZMEL,2,...,P—1,X BRAINS L HICHD
DEGHTY, RETL i), HE X 12 P -1 M2EL C2fEIE->Tb 6 ) DElR3H 5, &
DIEZ®RZ )y EEZTHREL X)), E20 WA a7 RbE P -1/, Ths 2 LI1dH
50 TY,

WREDS, B ey PHPME X CEEET L ERELET, WE1,2,...,P-1 1LY vy
CHEELTHOERA, ME X +1,X+2,..., NIZOoWwTh, o DMEDORMKA 2 7IZRE
X OREAaATINELIEFERVAD, PRIEYyy VPR EL HOuEYA, P<i<X T
H25EI)BRME ITOoVTIE, RT Ax + M — A; ADBREL THHEVELA,

DLETHBRZZ L9 % TARS N THRORVE) ORED MV Kichiu, ME X ICHI N
UMD W ERbh ) T,

ZHrTnuHE, FERAINZARELHZ LEEVUNET, TNEMTO X ICRE X
T, M i ARG TOlbAVEONE B(< M) EL, B, > MV EREL T,
1,1,...,1,2,2,...,2,3,... DX iz, ME i 2 B, G THNAS L) 2MEDN%2EZ, 2D
FIOBPID MV iz Yy 1,2,...,M,1,2,..., M,... DEZZDIEICE Y)Y TET, DL E,
EORMEICADZTERD B, LT THH, EDPr vy ¥dbbr iV EZEL, EoYr vy PbRILM
B R L T b ERRB b £7,

C OfEE ok HEHE R IZ O(Nlog N) T,



C: Domino Quality
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D: Problem Scores
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F: Histogram Rooks
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A: Table Tennis Training

If A and B have the same parity, the first player should lose all matches and the
second player should win all matches. In this case, they will meet after £ 5‘4
rounds.
Suppose that A and B have different parity. If the players just move towards
each other, they can get very close (to neighboring tables), but they can’t meet.
The only way to change parity is winning at table 1 or losing at table V.

We need to consider only two cases:

e The first player moves to table 1, wins an additional game there, and
moves towards the second player, who just moves towards table 1 for the
whole time, until they meet.

e Similarly, the second player moves to table N, loses an additional game
there, and moves towards the first player, who just moves towards table
N for the whole time, until they meet.

The smallest number of rounds is then
min(A — 1, N — B) + 1+ B=2=L,

Here, min(A — 1, N — B) stands for the number of rounds needed to reach
table 1 or table N, 1 stands for a single round to change parity, and %
stands for the number of rounds before the friends meet after changing parity
(which is half the distance between them).



B: Voting Judges

Without loss of generality, let A; > As > ... > Ay. Note that if a problem
with an initial score of A; can be chosen for the problemset, a problem with
a higher initial score can also be chosen. Let’s use binary search to find the
answer. We need to check if problem with the X-th highest initial score has a
chance to be chosen.

If X < P, problem X can be chosen if all judges vote for problems 1,2, ..., P.

If Ax + M < Ap, problem X can’t be chosen.

Otherwise, it’s best to try to form a problemset with problems 1,2,..., P —
1,X. Why? If you ask yourself a question “we need problem X to beat all
problems except P — 1 of them, which problems should be left unbeaten?”, it’s
obvious that the answer is “P — 1 problems with the highest score”.

Clearly, we assume that all judges vote for problem X. It’s fine if all judges
vote for problems 1,2,..., P — 1. It’s also fine if all judges vote for problems
X+ 1,X +2,...,N, as these problems can’t have a higher final score than
problem X anyway. For problem ¢ such that P <1i < X, at most Ax + M — A;
judges can vote.

If the total number of votes that can be cast (as described above) is less
than MV, we can see that problem X can’t be chosen.

Otherwise, it can! This can be shown as follows. Let B; < M be the
number of votes that can be cast for problem 4, and  B; > MV. Write down a
sequence where problem 7 is repeated B; times consecutively. Now, assign votes
by judges 1,2,...,M,1,2,..., M, ... to the first MV problems in the sequence,
in this order. It’s easy to see that every problem gets at most B; votes, every
judge votes exactly V' times, and no judge votes for the same problem twice.

Time complexity of this solution is O(N log N).
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C: Domino Quality

Let S be the set of all pairs (IV, Q) such that it’s possible to place some dominoes
on an N x N grid so that the quality of all rows and columns is Q.

Observe that if (4,Q) € S and (B,Q) € S, then (A+ B,Q) € S. Indeed,
we can form an (A 4+ B) x (A + B) matrix of quality @ by putting an A x A
matrix of quality @) into the top-left corner, and a B x B matrix of quality @
into the bottom-right corner.

Observe that {(3,1),(4,3),(5,3),(6,3),(7,3)} C S. The easiest way to find
the corresponding matrices is to implement a brute force or a randomized ap-
proach, but there are some nice regular pictures as well:

3, 1) 4, 3 (5, 3 (6, 3) (7, 3
aa. aabc aabba aabc.. aabbcc.
..a ddbc bcc.a ddbc. . dd.dd.a
..a bcaa b..cb . .aabc ..d..da

bcdd a..cb . .ddbc ..d..db
abbaa bc..aa dd.dd.b

bc..dd ..d..dc

..d..dc

Finally, observe that the N = 2 case is impossible, for N = 3 we can output
the (3,1) matrix, and any N > 4 can be represented as N = 4z + y, where x
and y are integers such that £ > 0 and 4 < y < 7, and thus we can form an
N x N matrix of quality 3 using the 4 x 4 matrix x times along with a single
Yy X y matrix.
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D: Problem Scores

We have N — 1 conditions that must be satisfied, one condition for each k:

k41

N
=1 i=N—k+1

Note that we only need to satisfy one condition, namely, when k& = L%J
When k > L%J, equal variables in both sides cancel each other, and we end up
with the same condition for some k' < L%J When £k < L%J, increasing k by 1
adds Agio to the left side and An_j to the right side, and such an inequality
is never less restricting.

Let Ay =141 +x2+ ...+ 2, where z; > 0 for any i. If we substitute A;
in the L%J—th condition using this equality, our problem becomes the following:

Count the number of tuples of non-negative integers (z1,za,...,2y) such

that:
e +ao+...+xny < N-—-1;
o x1 > [x9,25,...,25]-[0,1,2,3,...,3,2,1], where “” denotes dot product.
Suppose that we have fixed x5, x3,...,ZN, and:
e rot+r3+...+ITN =a;
o [x3,23,...,2n]-]0,1,2,3,...,3,2,1] =b.

Then we have x1 < N — 1 — a from the first constraint, and xy > b from the
second constraint. Thus, we have exactly max(N — a — b, 0) choices for z;.

It follows that only a+b = |22, 23,...,2N][1,2,3,4,...,4,3,2] is important.
The problem becomes:

e Sum up max(N — [r2,x3,...,2n] " [1,2,3,4,...,4,3,2],0) over all tuples
of non-negative integers (2, x3,...,ZN).

This leads to a simple O(N?) DP solution.
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E: Balancing Network

Finding a uniforming state

Let’s choose some wire w. How can we check if a uniforming state exists that
leads to w from any starting wire?

Create a boolean array A of length N. Let A; be true if we can finish at
wire w starting from wire ¢. Initially, the network is empty, and only A,, is true.
We’ll add balancers from right to left.

How does A change when we add a balancer (z,y) on the left of the network?
The only change is that A, and A, are changed to (A;|A,). Indeed, if A, and
A, are both true or both false, this balancer doesn’t change anything, and if
one of them is true (say, 4, ), we can direct the balancer correspondingly (say,
from y to x), and now we can finish at wire w starting from wire y as well.

If after adding all balancers A; is false for some i, the required state doesn’t
exist. Does it exist otherwise? In other words, we know that for any ¢ individ-
ually a state that leads from ¢ to w exists, but does a single state that leads all
wires to w exists?

It turns out that it does. Just consider the same process of adding balancers
from right to left:

e whenever A, is true and A, is false, direct the balancer from y to x;
e whenever A, is false and A, is true, direct the balancer from x to y;
e otherwise, direct the balancer arbitrarily.

Observe that if A; is true for any i, there exists a state that leads from 4 to w
in this setting.

Time complexity of this solution is O(nm). To optimize it, notice that the
process for all wires w is almost the same, the only difference is the initial state
of A. Instead of keeping a boolean value in each A;, let’s keep a bitset of N
values, one bit per each w. Everything else stays the same, but time complexity

becomes O(—2"—) (with wordsize = 64 it’s less than 10® operations).

Finding a non-uniforming state

It turns out that a non-uniforming state always exists for N > 3.

Let’s maintain an integer array B;, denoting the wire we finish at if we start
at wire ¢, for each ¢. Initially, the network is empty, and B; = ¢ for any ¢. We’ll
add balancers from right to left.

How does B change when we add a balancer (z,y) on the left of the network?
If we direct the balancer from x to y, the only change is B, becoming equal to
B,, and if we direct it from y to x, the only change is B, becoming equal to B, .
Our goal is to have at least two distinct values in B after adding all balancers.

It turns out we can keep this condition true at any time. Indeed, if N > 3,
at least one of the following is true:
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e B, appears at least two times in B: then we can safely set B, < By;
e B, appears at least two times in B: then we can safely set B, < By;

e some other value z (2 # B, By) appears at least once in B: then we can
direct the balancer arbitrarily.

Time complexity is O(M).
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F: Histogram Rooks

Let f(L, R, B) be a function that returns some DP on a part of the histogram
from column L to column R, only considering cells at y > B (that is, assuming
that the height of column ¢ is h; — B). If some a; = B for L < i < R, we can
divide this segment into several segments containing columns with a; > B, and
merge DPs. Otherwise, we can call f(L, R, B+ 1) and modify DP.

If we have fixed the way of filling all rows above B-th with rooks, all columns
can be divided into three categories:

1. category R: contains a rook;

2. category A: doesn’t contain a rook, but all cells in this column are under
horizontal attack of some rook;

3. category U: doesn’t contain a rook, and at least one cell is not under attack
of any rook (thus, this column needs at least one rook).

Our DP can have two arguments: A and U, the number of columns of the
corresponding categories (R is segment width minus A 4+ U).
Merging DPs is easy then just loop over A and U in the left part and in the

right part: dp(A,U) = Z Z dpLeft(i,j) - dpRight(A —i,U — j).
=0 7=0
In modifying DP, there are a couple of cases:

1. no rook in this row: all A-columns transform into U-columns, increase

dp(0, A+ U) by dpOld(A,U);
2. only rooks in R-columns: increase dp(A,U) by dpOld(A,U) - (2F —1);

3. X rooks in A-columns and Y rooks in U-columns (and maybe rooks in
R-columns): increase dp(A — X, U —Y) by dpOld(A,U) - (;) (g)QR.

The answer is the sum of dp(A,0) returned from f(1, N,0).
To optimize this solution, we need to move from O(N?) DP states returned
from f to O(N) DP states. Consider two cases:

1. below this part of histogram, every “row” (actually, part of the row con-
nected to this column segment) will contain at least one rook;

2. below this part of histogram, at least one “row” will contain no rooks.

In case 1, note that we can assume that all A-columns are just R-columns,
and it doesn’t change anything.

In case 2, note that we can assume that all A-columns are just U-columns
(they will become U-columns in the future, but we can just assume they already
are).

Hence, we can have dp(C,U) where C' is 1 or 2, denoting case number from
above. All transitions work in a similar way. Of course, the “no rook in this
row” transition can not happen when C = 1. An additional transition happens
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from dpOld(2,U) to dp(1,U): any time we encounter an empty “row”, we can
make this transition as an assumption that we won’t have empty rows in the
future.

Time complexity is O(N3).
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