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E: Antennas on Tree
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F: XOR Tree
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G: Colorful Doors
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H: Generalized Insertion Sort
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J: Rectangles
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A: Two Integers

If X is a multiple of Y, the answer is —1: a multiple of X is always a multiple of Y.

Otherwise, X is always a valid answer.



B: Two Arrays

In each operation, the value > b; — > a; decreases by 1. Thus, the total number of operations must
be K => b, — > a;.

In case a; < b; for some i, you must perform operations on a; at least [(b; — a;)/2] times. Thus, the
sum of [(b; — a;)/2] for all 4 such that a; < b; must be at most K. Otherwise, print "NO”.

On the other hand, when this condition is satisfied, we can prove that the answer is "YES”. Notice
that the order of operations of adding twos and ones doesn’t matter. First, add 2 to a;, [(b; — a;)/2]
times. Then, perform remaining ”add two” operations on arbitrary elements. At this point, all 7 satisfies

a; > b;, so you can finish operations by performing ”add one” operations appropriately.



C: Vacant Seat

Consider the following two types of intervals (we call it ”good interval”):

(a) A closed interval [, r] such that » — [ is odd and [, r are filled by people with the same sex.
(b) A closed interval [I, 7] such that r — [ is even and [, r are filled by people with different sex.

In both cases, we can see that the interval contains at least one empty seat. (Otherwise, males and
females must sit alternately in the interval [I,r], and we get a contradiction in both cases.)

We use binary search, and find an empty seat in O(log N) queries.

e First, perform a query on seat 0. If this is empty, we finish. Otherwise we find a good interval
[0, N]. (Since the seats are cyclic, we can call seat 0 "seat N”).

e Suppose that we have a good interval [I,7]. Let m := |l 4+ r]/2 and perform a query on seat m. If
this is empty, we finish. Otherwise, we can prove that at least one of intervals [I, m], [m, r] will be

a good interval by a simple argument about parities.



D: Forest

If M = N — 1, the input is a tree, and the answer is 0. Assume that M < N — 1.
First, divide the forest into connected components (trees). We want to merge these trees into a single
tree by adding edges.

Here, we have the following constraints:

e From each tree, at least one vertex must be chosen (otherwise this tree will be isolated).
e There are N — M trees. Thus, we must add N — M — 1 edges. This means that the total number
of chosen vertices must be 2(N — M — 1).

It turns out that these conditions are sufficient. That is, if a subset of vertices satisfies the conditions
above, we can actually make a tree by choosing those vertices. For example, we can connect all trees by
repeating the following: choose two components with the biggest number of chosen (and still unused)

vertices, and connect them.
The answer is as follows. First, if N < 2(N — M — 1), the answer is "Impossible” (from the second

condition). Otherwise, we choose vertices greedily as follows:

e First, from each component, choose a vertex with the smallest cost.
e Then, from remaining vertices, choose vertices from the smallest costs, until we choose 2(N —M —1)

vertices in total.

These operations can be implemented in O(NlogN) time.



E: Antennas on Tree

Consider two vertices s,t in the tree. When can we distinguish these vertices?

If the distance between them is odd, we can always distinguish them as long as we have at least one
antenna (by checking the parity of distance from the antenna). Otherwise, let u be the midpoint between
s and t. We see s,t and antennas from w. If the direction of at least one antenna is the same as the
direction of s or ¢, we can distinguish them.

Thus, the condition can be restated as follows:

For each vertex v, the following holds. Remove v from the tree, and suppose that we get k subtrees.

Then, at least £ — 1 of the subtrees must contain antennas.

Now, we’ll describe the solution. In case the tree is a path, the answer is one: we can put an antenna
on one of the leaves. Otherwise, a vertex r with degree at least 3 exists. Make it the root of the tree.

The condition can be again restated as follows:

For each vertex v in the rooted tree, the following holds. If v has k children, at least K — 1 of k

subtrees whose roots are children of v must contain antennas.

This is because, if v is not r, v always contain at least one antenna in the ”parent direction”. (Otherwise,
the condition above won’t be satisfied for the root r).

Now we can compute the answer by a simple DP. Define dp[v] as the smallest number of vertices we
must choose from the subtree rooted at v, when we want to satisfy the conditions above for all vertices

in this subtree.



F: XOR Tree

For a vertex v, define b, as the XOR of all values assigned to edges incident to v. If we perform an
operation on the path between two vertices v and v with the value xm we change b, and b, to b, XORx
and b, XORz, respectively. Also, note that all b, will be zero if and only if all edges are assigned zeroes.

Thus, the problem can be restated as follows:

You are given a sequence of integers by, by, .., by (here, all integers are up to 15). In each operation,
you choose 4, j, 2, and XOR z into b; and b;. How many operations do you need to make all integers

zeroes?

Now, consider a graph with N vertices 1,2, .., N. Initially, this graph doesn’t have edges. Whenever
you perform an operation for indices ¢ and j, add an edge between vertices ¢ and j.

After we perform all operations, this graph will have several connected components. When you perform
an operation between ¢ and j, the value b, XORb; doesn’t change. Thus, the XOR of all values in a single
connected component never changes.

Therefore, we want to add minimum possible number of edges to this graph such that in each connected
component, the XOR of all b; is zero. Obviously, each connected component should be a tree if we want
to minimize the number of edges. In this case, the total number of edges is N minus the number of
connected components.

Thus, we can again restate the problem as follows:

You are given a sequence of integers by, by, ..,by (here, all integers are up to 15). Divide these
numbers into disjoint set, such that in each set the XOR of all values is zero. The answer is N

minus the maximum possble number of sets we get.

First, we should make sets as follows:

e If we have a zero, we should create a set with this single zero.

e If we have two identical numbers, we should create a set with these two numbers.

After these process, we will have at most 15 elements. Now, we can compute the maximum number

of sets in a simple O(3%) DP, where k is the number of remaining elements.



G: Colorful Doors

Make the segment cyclic, that is, assume that door 1 is to the right of door 2N. Now we have a circle,
there are 2N doors on the circle, and there are also 2N section between two doors. The new section
between 2N and 1 should be walked through.

Under this setting, it’s easier to prove the claim from the statement: "It can be shown that he will
eventually get to the right bank”. Choose an arbitrary section (call it section s), and start walking from
section s (keep walking forever). Since the number of sections is finite, he will eventually pass through
the same section twice. So, the sequence of sections we pass through will be periodic from some point:
Vg eee tyees stye--  t, - ). Furthermore, since the section we pass through immediately before a certain
section can be uniquely determined, the entire sequence will be periodic: "s,-+- , 8, ,8,+--,8,---,".
This proves the claim from the statement because if we start from section 0, we will return to this section
in the future.

By the same observation, we can divide the 2N sections into one or more cycles. We want to find a

coloring of doors such that the set of sections represented by ’1’ in the input corresponds to one of the

cycles.

e In case all sections should be walked through (i.e., all sections are in the same cycle)

— (i) In case 2N = 4k for some k, the sequence of doors 1,2,1,2,3,4,3,4,5,6,5,6,...,2N —
1,2N,2N — 1,2N is a valid answer.

— (ii) In case 2N = 4k + 2, we can prove that the answer doesn’t exist. Let’s start from the
case N = 1. In this case the number of cycles is two. After that, increase N one by one. In
each step, we can see that the parity of the number of cycles always change, regardless of the
positions of two new doors we add. Thus, when 2N = 4k + 2, we have even number of cycles,
and all sections can’t be in one cycle.

e Other cases

Now, the set of '1’s will be a set of two or more paths. Let’s define the length of a path as the
number of doors in the path, excluding two doors at the ends. For example, if s = 010110011,
after we make it cyclic we get s = 1010110011, and the set of lengths of paths is 0,1,2. It’s easy
to see that only this set matters: the order of these paths or the number of ’0’s between them
don’t matter. Now, we consider several cases depending on the sum of these lengths.

Let’s call a door ”internal” if it’s between '1” and '1’, ”"external” if it’s between '0’ and ’0’, and
”"boundary” otherwise. An internal door must be passed through in both directions, a boundary
door must be passed through in one direction, and an external door must not be passed through.

— (iii) The sum of these lengths is odd
From the observation above, an internal door must be matched with another internal door.
However, in this case, the total number of internal doors is odd, and this is impossible.

— (iv) The sum of these lengths is 4k



Suppose that the set of lengths contains {«} and {y}. By connecting the first section of {y}
immediately after the last section of {x}, we can regard them as {z + y}. By repeating this,
we will eventually have a single element divisible by 4, and it reduces to the case (i).
— The sum of these lengths is 4k + 2 - now we have two cases:
* (v) We have at least two paths with nonzero lengths
Suppose that the set of lengths contains two nonzero elements {z} and {y}. Choose one
internal door from each path and match them. Then, these two paths can be regarded as

two paths whose sum is « + y — 2 (see the picture below). It reduces to the case (iv).

o—o—@——O——' —es—

>—q —o—®

* (vi) All paths but one have lengths of zero
All paths of lengths zero must be merged together, and this reduces to the case (ii). This

is impossible.



H: Generalized Insertion Sort

Assume that each vertex contains a ball, and each ball has an integer written on it. We move balls by
operations described in the statement.

Here’s our plan. First, we choose an arbitrary leaf, and perform some operations until we assign a
correct ball to the chosen leaf. After that, we can ignore this leaf (never perform operations that affect
this leaf). By repeating this process from leaves to roots, we can achieve the goal.

To reduce the number of operations, we process some leaves (and other vertices) at once, as follows.

We define "leafish vertex” as follows:

o A leaf is a leafish vertex.

e If a vertex has exactly one child, and the child is leafish, is parent is also leafish.

Each time we remove all leafish vertices, the total number of leaves is always halved. It means that we
can make the tree empty by repeating the process "remove all leafish vertices ”O(logn) times. Thus, if
we can assign correct balls to all leafish vertices in O(n) operations, we can achieve the goal in O(nlogn)
operations.

How do we do that? Let’s color balls. We color the balls that should be assigned to leafish vertices
red. Other balls are white.

Then, repeat the following:

e If the ball at the root is red, insert it into a ”correct position”, and color it red. More specifically,
look at the path that contains the destination of this ball. Check balls in the path from bottom
to top. Whenever we find a non-blue ball or a blue ball that should be above our current ball in
the final position, insert our current ball there.

e Otherwise, call the ball at the root B. Then, find the bottommost ball that is red or white: call
it C. Paint B black, and insert it to the position of C.

Here, blue balls represent balls that are assigned to the correct path, in ”correct order”. At each
moment, all blue balls are in leafish vertices, and inside each path, the blue balls are below other balls.
Furthermore, the relative order of blue balls are the same as there order in the final position.

How many operations do we need for this process? Since we color red and white balls after the very
first operations, the total number of operations for those balls is at most n. Blue balls never appear
at the root because all of them are at leafish positions. Black balls may reach the root only after we
perform an operation for red balls. Thus, the total number of operations for black balls is at most (the
number of leafish vertices), and the total number of operations for all operations is n+ (the number of
leafish vertices).

The total number of phases is at most 11, and in each phase the number of operations is at most n+
(the number of leafish vertices). Thus, we need at most 24000 operations.

By the way, if you want more efficient solution, we can actually do it in O(n) operations. Here’s a

brief sketch of the solution:



See operations in the reverse order: we insert a chosen ball into the root.

We define ”broom”, a set of vertices that satisfies the following properties. Let = be an arbitrary
vertex in the tree, and c¢1,--- , ¢, be a subset of children of x. A broom consists of two parts: a
"path part” and a "tree part”. The path part is simply a path between the root and z. The tree
part is the union of subtrees rooted at c1,- - , cg.

Consider a broom with p vertices in the path part, and ¢ vertices in the tree part. We call it
"balanced” if 2q — ¢ < p < 4¢ + ¢ (where ¢ is a small constant).

Prove that a tree always have a balanced broom.

Take a broom from a tree. Paint all g balls that should be assigned to the tree part of the broom
red. Find a way to put all red balls into the path part of the broom, in O(p + ¢) = O(q) steps.
Suppose that now all red balls are in the path part of the broom. Find a way to put all red balls
into correct positions in O(p + ¢) = O(q) steps.

Now, just repeat this and we achieve the goal.
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I: Simple APSP Problem

The black cells will be very sparse, and the vast majority of rows and columns will be entirely white.

Suppose that two adjacent rows, the i-th row and the ¢ + 1-th row, are entirely white. Let’s call the
region in the i-th row and above ”UP”, and the i + 1-th row and below "DOWN”. It’s easy to see that
the shortest path between two cells crosses an edge (here, we imagine that white cells correspond to
vertices and there are edges for each adjacent pair of white cells) between the i-th row and the ¢ + 1-th
row if and only if one of the cells is UP and the other is DOWN.

Thus, if we change the costs of all edges between the i-th row and the i+ 1-th row to zeroes, the answer
decreases by the following value:

(The number of white cells in UP region) x (the number of white cells in DOWN region)

Now, we can ”compress” two adjacent empty rows, and we can do the same for columns. By repeating
these operations, we can compress the entire grid into a smaller grid with H, W < 2N, and we can simply
solve the problem by BFS in O(N*).

Note that we should add ”weights” to cells after compressions. For example, in the very first compres-
sion, if we merge the i-th row and the ¢ 4+ 1-th row into a single row, the cells of this row should have
a weight of 2. Then, in the final grid, the distance between two cells p and ¢ should be added to the
answer with the coefficient (the weight of p) x (the weight of ¢).
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J: Rectangles

The 2D version of the problem is easy. Consider two adjacent rectangles. If these two rectangles are
not ”aligned” well, we can uniquely determine the positions of more rectangles, and we will eventually
fill a entire row or a column. Thus, there is a line parallel to one of coordinate axis that doesn’t split
any rectangles. It’s not hard to count such patterns.

Now, let’s solve the original 3D problem. Assume that A, B,C are multiples of a,b, ¢, respectively
(otherwise the answer is zero). We call a pattern ”trivial” if there is a plane that doesn’t split any
cuboids. We can count the number of trivial patterns easily. The number of patterns that can be cut
by a plane can be reduced to the 2D case. Do not forget to avoid double-counting by using inclusion-
exclusion principle. For example, you should subtract the number of patterns that can be cut by planes
of two directions.

The main challenge is that, in 3D case, there are non-trivial patterns. Let’s think how these patterns
look like.

First, for a torus cuboid with parameters (p,q,r) in the statement, write an integer k into the
small-cube {((p + ¢) mod A, (¢ + j) mod B, (r + k) mod C))}. This way all small-cubes will con-
tain an integer. Let v(x,y,z) be the integer written on (z,y,z) For each pair (z,y), the sequence
v(z,y,0),v(z,y,1), -+ ,v(z,y,C — 1) will be a cyclic shift of 0,1,..,¢ — 1,0,1,..,¢c—1,..,0,1,..,¢c — 1.
Thus, the values of v(x,y,0) determines all values of v. Let v(x,y) = v(x,y,0), and consider an A x B
table whose (i, j)-element is v(i, 7).

Now, for a given table, we want to count the number of patterns that are consistent with this table.
Fix a pattern that is consistent with the table. In each layer (here a layer means a plane with constant
value of z-coordinate), we get a partition of the entire A x B rectangle into a x b torus rectangles that
corresponds to the pattern. Here, notice that a torus rectangle never contains two cells with different
values of v, and the partition at the layer with v(x,y, z) = 0 determines everything else.

Thus, we get the following. Let f(h) be the number of ways to partition the set of cells (x,y) such
that z(x,y) = h into torus rectangles. Then, the number of patterns that is consistent with the table is
F0)C7e x - x fle—1)Ce,

Now, fix an A x B table (with the values of v). When do we have non-zero number of non-trivial
patterns that is consistent with this table?

We call this table "row-aligned” if in each row, all numbers are the same. Similarly, define ”column-
aligned”. If the table is both row-aligned and column-aligned, it means that the table only contains a
certain constant, and this corresponds to patterns that can be cut by xy-plane. Since this pattern is
trivial, we can ignore it. If the table is row-aligned (or similarly, column-aligned), the table is multiple
stripes whose heights are multiples of a (see the picture below). In this case the only way to partition
it into torus rectangles is to entirely divide it into stripes with heights a, thus again it corresponds to a

trivial pattern. Thus, we assume that this table is not aligned in any directions.
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Consider a way to partition this table into torus rectangles of dimensions a x b. Each torus rectangle
must contain the same values of v. As we see in the 2D case, this partition is either "horizontal” (i.e., a
union of stripes of height h, some stripes are possibly shifted horizontally), or ”vertical”. If all such ways
are "horizontal” (or ”vertical”), it corresponds to a trivial pattern. Thus, there must be both horizontal
ways and vertical ways to partition it. It means that the entire A x B table must be splitted into a x b
torus rectangles in the most natural way (i.e., all rectangles are aligned like a grid). Also, since the table
is not aligned, there is a unique way to do so. Let’s call it "standard partition”.

In order for the pattern to be non-trivial, in at least one layer the partition must be shifted to horizontal
direction, and in at least one layer the partition must be shifted to vertical direction. This means that
there exists an integer h that dominates some rows and some columns, as in the picture below:

Since we have a standard partition, now we can consider the entire table as an A/a x B/b table. As
we see above, there are h,p,q such that h dominates exactly p rows (0 < p < A/a) and ¢ columns
(0 < ¢ < B/b). In this case, the number of standard partition is 1, the number of horizontally shifted
partitions is b — 1, and the number of vertically shifted partitions is a? — 1. We want to count the
number of ways to choose a sequence of C'/c¢ partitions such that at least one is horizontally shifted, and
at least one is vertically shifted. This value is (b” 4 a9 — 1)¢/¢ — (bP)C/¢ — (a?)C/¢ + 1.

To summarize, the solution is as follows:

e Count the number of trivial patterns by inclusion-exclusion.
e Let’s count the number of non-trivial patterns. First we fix a standard partition (ab ways) and

the value of h (¢ ways). Then, for each pair (p, ¢), compute the following values:
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— Suppose that we have an A/a x B/b. How many ways are there to fill this tables with integers
between 0 and ¢ — 1, such that exactly p rows are dominated by h and exactly ¢ columns are
dominated by h? This can be done by a simple O(N*) DP (”exclusion principle”).

— Compute the value (b” + a? — 1)/¢ — (b?)C/¢ — (a9)C/c 4 1.

We compute the product of two values above, compute the sum for all pairs (p, ¢), and multiply

it by a factor of abe.
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