Atcoder Regular Contest [O

writer : maroonrk

oo300s50 260
For International Readers: English editorial starts from page 7.

A : Add Sub Mul

gbooooooooooooooooobobOobobooooooooobobOobooon
gooooooo3ooogoooooooobooo0oooooooo fogooooooooo
gooooogbobobooooobooboobobobobooooooobooboboboonoo
gbooooboooocooooo

C++0o0nonoogon

https://beta.atcoder.jp/contests/abc098/submissions/2560740

B :0 Cut and Count

000000000000000000000026000000000000000000 2
000000000000000000000MX0YO0O00000000000000000
000000000000000000000000
26000000000000if(s[i] == ‘a*), if(slij ==**) --- 0000000000000
00000000000000ASCIOOO0ON b --- 2 0000000000000000
0000000000000

C++00000000

https://beta.atcoder.jp/contests/abc098/submissions/2560828

C : Attention

000+:0000000000000000000000000000000000 j(j<9)0O
0000000000 000o0ooUoUU j(y>¢) 0000000000 O0O0UDOOOOOO

0000000000000 (0)000000000000000000000000 O(N)
oo0olooooooolWw)oooooooooo

000000000 oN)Doo0oO0oUoUooooO0o0oUUoooOoooUoooooOoo
0000000000000 000000000000o0o0oOo()OOOOO0ooOO O(N)D
gbooooboobobooboboooobobooooboooon

D : Xor Sum 2

oooe, ey -+, cppddcy xorcg --- xor ¢y =c1+ca+ - +c,, UOOOOOOOOO
0000000000 k(0<k)0000020000000002*000100000¢000
0100000000000000000a+4+b—(azxorbd)=2x(aandb)0000000 and
Jdo0oDodo0o0Oooo0oDo0o0Doooooooooooooon

[000oo0oO0ooo(,-0O000O000O000o00O0 rO0 fO)OOUODOOOODOOOfOIO
000o0o0o00o00o0000oo00l0oo00o0o00o0ooUOooUoD f(OoooDooUoooo
o(N)OOODUOoOOoOOoooooOooo

0000000 b»it0ODOO0ODO0O0OD0O0D00D0O00D00000O00O00O0U0OU0OoDO0OD fHODO
oo0poDOopDoooood

E : Range Minimum Queries

obooboobobooO Xoooooooooobooobooboooooobooooboooo Yo
gbooooooobooooo

o000 XxXoooooooooooooxgooooooooooooooooooooooo
gooooooboOooooooobobooOoobo0ooODXxooooooooooooooooooDo
gbobooooboobooobooobooboooobobooboobooboobooobooboooon

oooooboooogobod e, e, -+, cp OOOOODOODOOOOOmMm-K+10000O
gbooooboooobooobbobooobooobooboobboooooooboobooobooboaoon
obooooodOe, e, -+, c,, DOO0O0O0O0O00O0m-K4+100000O000O

gbooooobooobobooboboooobobooooboooobooobooboooobooooobDooobobooobn
QLOooOoooooooyOOoOOOoOOOOO

goooooooooooObOOo0o0o0ooooooooooooooooboobobooXx0oooo
0000YQOOOoo O(NlegN)OOOOOUOOOOOOO

XONDODDDODDODDDODO O(N2%logN)DOODODOOOOOOOO

0000000000000 N<10°00000000000

F : Donation

00o0v0o0ooooc, =max(4,—B,,0) 0000000000000 O0OOOOOOOOO
gogbgooboobobboboobooboobooobn

gbobosgoboboobobgobobonoooboboooobobobooboobon 2
gboooboboooboobooooboooo

e 1000O0ODvODOODODB, 0D00DOOOOOODODODODOODLODOODOO
g1ooooooo

e J0000DvOODODODDOOOOD A,0000O0O0O0OOUIOOOOOOOOOO
oooooobooonog

gooooooOoooOoOoOOOOOOOOODOODODOOOD tObDOODOODOOOODOOD A
oboooOooboooooboon

%
gooboooooobobooboboobobobooooobooobobobobOooooDoon
gbobooooobooooooobobooooboboooooobobooooooboooo
gbooooboooobooboooogo

ooo00O sO0O0ooOO00O0oO00OooooooooD c,0oooooooooooooo
oooobob0oobooboooobobooooobooo

e 00000 DOO0O0ODODLOOOLUDOOOLOODOUODOLOOODLOOOOOODOODO
oo0o.O0O0ooooooooobooL ¢, 000000 ooooooooooo
oooo B, 00000

gbobooboboooboobooooboobooooobooobo

J

00000000000000000000 ¢, 000000000000000000000
0oooooooO
C,0000000:000000000:0000000000000000000 Py, P, ---Py
00000MO00 LO0000000000000000000000000 20000000
00000000000000000000000C,00B,00000000000000000
00000000000000 RO000D0000000000000000000000000
00000PO00000000000000000000000 Q;00000mazx(Q;,C,)+P,
000000 B,0O0OD0OOOOOO
000
000000000000000C,000000000000000000000000000
00000000000000000000000000 C,0max0000000000000
000000000000000000Union-Find0OOOOOOOO0O0OO0000000000
00000000000000000000000¢C,0000000000000000000
00
00000000000 B,OOODOOOOOOD DPOOOOOOOOOOOOOOOO

C, 000000000000 VUnionFind00OOO00O0000000000000000CO
O(NlogN)ODOOOO

Atcoder Regular Contest Editorial

writer : maroonrk

SER% 30 £ 5 H 26 H

A : Add Sub Mul

C++ Example

B: Cut and Count

C++ Example

C : Attention

If the i-th (from the west) person is chosen as the leader, the j-th person have to change the

direction in the following two cases:

e j < i and the j-th person is facing west.

e j >4 and the j-th person is facing east.

First, let’s pre-compute prefix sums: for each 4, count the number of people among the west-
most ¢ people who are facing east. This can be done in O(N) time. After that, we can answer
a query of the form ”How many people in a given range are facing east (west)?” in O(1) time,
thus the two values above can be computed in O(1) after we fix the leader.

This solution works in O(N) time in total.

https://beta.atcoder.jp/contests/abc098/submissions/2560740
https://beta.atcoder.jp/contests/abc098/submissions/2560828

D : Xor Sum 2

Notice that a + b — (a xor b) = 2 X (a and b). The inequality a + b > a xor b always hold,
and the equality holds if and only if @ and b = 0. (Intuitively, the equality holds if we get no

”carries” when we add a and b as binary numbers.)

Therefore, for a sequence of non-negative integers ci, c2, -+, ¢, the equation
C1 XOr Cg -+ XOT Cpy :Cl+02+ +Cm
holds if and only if for all k, the number of elements among ¢y, ..., ¢, that contains the k-th

bit (in binary representation) is at most one.

For a fixed [, the interval [I,r] satisfies the condition in the statement if no bit is repeated
among ag, . ..,a,. Thus, there exists an integer f(I), and the condition is satisfied if and only if
r < f(I). Since f(I) is monotonously non-decreasing, we can compute the value of f(I) for all |
in O(N) time using two-pointers.

It is also possible to directly compute f(I): for each k, list the indices of all elements that
contains the k-th bit.

E : Range Minimum Queries

Let’s fix the value X: the lower bound of removed integers. Under the condition that we are
never allowed to remove integers less than X, let’s minimize the value of ¥ (the upper bound of
removed integers). Note that we slightly modified the definition of X: now it is not necessary to
remove X.

In order to satisfy the condition, we can never choose an interval that contains an integer
less than X. Thus, let’s split the entire sequence by integers less than X. Now we get (possibly
multiple) sequences that don’t contain integers less than X, and we can freely perform operations
within each of these sequences.

Let ¢1, co, -++, ¢ be one of the sequences we get after the split. We can remove at most
m — K + 1 elements from this sequence (because before the last operation there must be at least
K elements). It is clearly optimal to remove integers from the smallest ones. Thus, the m— K +1
smallest elements in this sequence have possibility to be removed.

We do the same thing for each part of splitted sequences, and list all elements that may be
removed. If there are @) or more such elements, the minimum possible value for Y is the Q-th
smallest element among them.

We can do this in O(N log N) for a fixed X. If we try all N possibilities for X, this solution
works in O(N?log N) time in total.

Note that this problem is solvable even for N < 10%. This part is left as an exercise for readers.

F : Donation

Let’s modify the problem a bit. Instead of the condition about A,, we require the following
constraint: for each vertex v, whenever you are at vertex v, your money must be at least
Cy == max(A, — By, 0) (even after you donate money to the vertex).

It turns out that this problem is equivalent to the original problem. It’s clear that a valid
sequence of moves in the original problem is also a valid sequence of moves in the modified
problem. On the other hand, since it never makes sense to visit a vertex again after you donate
for this vertex (in this case, we can ”"postpone” the donation), a valid sequence of moves in the
modified problem can be converted to a valid sequence of moves in the original problem.

Let v be the vertex that maximizes the value of C,. From the observation above, we can
assume that, after we donate for this vertex we never visit this vertex. Let G1,...,Gg be
connected components we get when we remove the vertex v from the graph. Suppose that we
end the game inside G;. Then, after we donate for v, we must move inside G;.

We claim that (one of) optimal solutions is of the following form:

e We donate for all vertices in Gi,...,G;—1,Git1,...,Gg.
e Move to the vertex v, and donate for it.

e We donate for all vertices in G;. We never go out of this subgraph during this phase.

Suppose that there is an optimal solution that is not of this form. Then, there exists a vertex
w in G; such that we donate for w before v. In this case, we can cancel the donation for w,
and instead we add a donation for w right after the donation for v, and improve the solution.
Therefore, we proved the claim above.

Let’s construct a rooted tree as follows:

e v (the vertex that maximizes C,) is the root of the tree.
e Recursively construct rooted trees for subgraphs Gy, ..., Gg.

e Add an edge between v and the root of the tree for G; for each 1.

We can construct this tree in O(N log N) time in the order from leaves to root by handling
vertices in the increasing order of C.

Now, we can do a DP on this tree. For each vertex u, define dplu] as the minimum amount
of money required to donate for all vertices in the subtree rooted at u. Then we can fill the DP
table in the order from leaves to the root.

This solution works in O(N log N) time.

