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C : Linear Approximation

B, =A;—i000000000000000O0bVO000as(B;—b)00000O0OOOOO
go00ooododoosd B;0O0O00DODOOOOO0ODODOOOOODODOODDOOOOOOODOO
gooooooooooooooooObo0o0ooOo0ooooOoo0OooooooDBO0b00O000DO
0000000000000 000000000000000U00OO0OOUOO0OOg O(NlogN)
gboooo



D : Equal Cut
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E : Or Plus Max
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F : Colorful Sequences
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A : Multiple of 2 and N

If N is even, the answer is IV; otherwise the answer is 2/NV.
C++ solution

B : Maximum Difference

Print max minus min.
C++ solution

C : Linear Approximation

Define B; = A;—i. Then, we want to minimize the value of the sum of abs(B;—b)
by choosing a variable b.

It turns out that the optimal value of b is the median of B;. This is because,
if b is not the median, if we continuously change b to the direction of the median,
the sum of abs(B; — b) never increases.

We can get the median by sorting the array B. This solution works in
O(NlogN) time.
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D : Equal Cut

Let’s pre-compute prefix sums (and now we can get interval sums in O(1).

We need to make three cuts. Let’s fix the position of the second (the middle)
cut. Now we have two parts, and we need to make one more cut for each of the
two parts.

Let L, R be the sum of all elements in left and right parts, respectively. Let
L1, Ly be the sum of all elements in the two smaller parts we get from the left
part (define Ry, Ry similarly). How should we choose Lj, Lo?

Notice that we should always make a cut that minimizes the value of |L; —
Lo|, regardless of the value of Ry and Ry. No matter what the values of
R; and Ry, this choice always minimizes max{Li, Lo, R1, Ro} and maximizes
mub{ Ly, Ly, Ry, Ro}. (This is because the average of Ly and Ly is always L/2.
The value of maxz{Ly, L2} becomes the closest to L/2 (and the smallest) when
|L; — Ls| is minimized. The same observation holds for the min.)

Thus, once we decide the position of the second cut, we can uniquely deter-
mine the positions of the first cut and the third cut. Let F(i) be the optimal
position of the first cut when the second cut is made at position ¢. Since F(4) is
monotonously increasing, we can compute this function by using two-pointers.
Similarly, we can compute the position of the third cut.

This solution works in O(N) time.

E : Or Plus Max

In this editorial, for two integers a and b, ”a C b” means that the set of positions
of ones in the binary representation of a is a subset of that of b.

Ideally, for each x, we want to compute max A; +A; s.t. (i or j) = x. Then,
we can compute the solutions as prefix maximums of this array. However, this
is difficult.

Instead, for each z, compute mazx A; + A; s.t. (i or j) C z. Notice that the
prefix maximums of this array give the same results because (i or j) C x —
(i orj) <.

To compute this, for each z, we want to get the two largest values of A; such
that 7 C x.

Let’s use an algorithm similar to Fast Zeta Transform. Imagine a set S,
the (multi)set of all A; such that ¢ C 2. We are only interested in the largest
two elements of S,.

e For each k from 0 to N — 1,

— For each z from 0 to 2V~ such that the k-th bit of z is zero,

* Spl(1<<k) = Sg|(1<<k) U Sz
* If Sy (1<<k) contains more than two elements, discard small ele-
ments while it has more than two elements.

This solution works in O(N2%) time.



F : Colorful Sequences

It’s easy to compute the total number of occurrences of A in (not necessarily
colorful) all sequences of length N: since there are N — M + 1 possibilities for
the position of A and you can freely choose the remaining N — M elements, this
is (N - M+ 1)KN-M,

From now on, let’s compute the total number of occurrences of A in non-
colorful sequences of length N. The answer to the original problem is (N — M +
1)KN=M minus this number.

As a warm-up, consider the following problem:

[Count the number of non-coloful sequences of length V. )

Define dpli][j] as the number of non-colorful sequences of length i, such that
the last j elements are pairwise distinct but the last j+ 1 elements are not. The
transition coefficients from dpli][j] to dp[i + 1][j'] is as follows:

e Incase j+1<j,0.
eIncase j+1=75, K—j.
e Incase j+1> 7, 1.

This is O(N K?) with straightforward implementation, but with prefix sums
we can do it in O(NK).
Let’s return to the problem. Consider three cases:

Case 1. A is colorful.

Obviously, the answer is 0.

Case 2. All elements in A are pairwise distinct. A is not
colorful.

Consider the following problem:

For each non-colorful sequence of length IV, count the number of contiguous
subsequences of length M whose elements are pairwise distinct. Find the
sum of these counts.

Note that the elements in A are irrelevant to this problem: we only care the
value of M. This problem can be solved in the almost same way as the DP
solution in warm-up problem. Notice that each of K!/(K — M)! sequences of
length M occur in all non-colorful sequences the same number of times. Thus,
the solution to the original problem is the solution to this problem, divided by
K!/(K — M)\



Case 3. There are duplicated elements in A. A is not col-
orful.

Define F', B as follows:

e The first F' elements of A are pairwise distinct, but the first F'4+1 elements
are not.

e The last B elements of A are pairwise distinct, but the last B+ 1 elements
are not.

For each i(0 < i < N—M), let’s compute the number of ways to make a non-
colorful sequence by attaching i elements to the beginning of A and N — M —i to
the end of A (the answer is the sum of these values). Notice that we can handle
two directions independently. That is, this is the product of (the number of ways
to make a non-colorful sequence (of length M +1) by attaching i elements to the
beginning of A) and (the number of ways to make a non-colorful sequence by
attaching N — M — i elements to the end of A). These values can be computed
in the same way as the warm-up problem.

For all three cases, this solution works in O(NK) time.



