
A - Group Commands and Wall Planning

Time Limit: 2 sec / Memory Limit: 1024 MiB

Problem Statement
There is an grid. The coordinate of the top-left cell is , and the coordinate of the cell rows

down and columns to the right is . There are walls between some adjacent cells.

There are robots on the grid. The initial position of the -th robot is , and its destination is

. Takahashi wants to operate these robots to bring all of them to their respective destinations.

Before making any moves, the following two types of preparations can be made:

1. In addition to the existing walls, you may add walls between any adjacent cells.

2. Divide the robots into groups. Each robot belongs to exactly one group, and all robots in the same

group can be operated simultaneously.

These preparations must be completed before the first move. After that, no additional walls can be placed

and the group assignments cannot be changed.

Next, the robots can be moved by repeatedly performing the following two types of operations:

1. Group Command: Specify a group and a direction (up, down, left, or right). All robots in that group

will attempt to move one cell in the specified direction. If there is a wall between the current and

target cells, or if another robot is occupying the target cell, the robot does not move. Among the

robots belonging to the group, those farthest in the direction of movement will attempt to move

first. For example, if robots are at and and the direction is up, the robot at will

move to first (since it has a smaller coordinate), and then the robot at will move to the

now-empty .

2. Individual Command: Specify a robot and a direction (up, down, left, or right). The specified robot

will attempt to move one cell in the specified direction. If there is a wall between the current and

target cells, or if another robot is occupying the target cell, the robot does not move.

Even if a robot reaches its destination once, if it moves away from the destination due to subsequent

operations, it is not considered to have reached its destination.

You may perform at most operations. Guide all robots to their destinations using as few operations

as possible.

N × N (0, 0) i

j (i, j)

K k (i , j)k k

(i , j)k
′

k
′

(1, 0) (2, 0) (1, 0)
(0, 0) i (2, 0)

(1, 0)

KN 2

Scoring
Let be the number of operations performed, and let be the Manhattan distance between the final

position and the destination of robot . Then, you obtain the following absolute score:

The lower the absolute score, the better.

For each test case, we compute the relative score , where YOUR is your absolute

score and MIN is the lowest absolute score among all competitors obtained on that test case. The score of

the submission is the sum of the relative scores.

The final ranking will be determined by the system test with more inputs which will be run after the

contest is over. In both the provisional/system test, if your submission produces illegal output or exceeds

the time limit for some test cases, only the score for those test cases will be zero, and your submission will

be excluded from the MIN calculation for those test cases.

The system test will be performed only for the last submission which received a result other than CE .

Be careful not to make a mistake in the final submission.

Number of test cases

Provisional test: 50

System test: 2000. We will publish seeds.txt (https://img.atcoder.jp/awtf2025heuristic/seeds.txt)

(sha256=063a84b1c0dc9388b0996eed0bc645529c931c139bee6b8e0e84a4faf3e06c40) after

the contest is over.

About relative evaluation system

In both the provisional/system test, the standings will be calculated using only the last submission which

received a result other than CE . Only the last submissions are used to calculate the MIN for each test

case when calculating the relative scores.

The scores shown in the standings are relative, and whenever a new submission arrives, all relative scores

are recalculated. On the other hand, the score for each submission shown on the submissions page is the

sum of the absolute score for each test case, and the relative scores are not shown. In order to know the

relative score of submission other than the latest one in the current standings, you need to resubmit it. If

your submission produces illegal output or exceeds the time limit for some test cases, the score shown on

the submissions page will be 0, but the standings show the sum of the relative scores for the test cases

that were answered correctly.

About execution time

Execution time may vary slightly from run to run. In addition, since system tests simultaneously perform a

large number of executions, it has been observed that execution time increases by several percent

compared to provisional tests. For these reasons, submissions that are very close to the time limit may

T d k

k

T + 100 × d

k

∑ k

round(10 ×9
)YOUR

MIN

https://img.atcoder.jp/awtf2025heuristic/seeds.txt
https://img.atcoder.jp/awtf2025heuristic/seeds.txt

result in TLE in the system test. Please measure the execution time in your program to terminate the

process, or have enough margin in the execution time.

Input
Input is given from Standard Input in the following format.

In all test cases, is fixed.

 represents the initial position of the -th robot.

 represents the destination of the -th robot.

All initial positions and all destinations are each mutually distinct, but the initial position of robot

may coincide with the destination of robot .

Each is a binary string of length . The -th character indicates whether

there is a wall (1) or not (0) between cells and .

Each is a binary string of length . The -th character indicates whether there

is a wall (1) or not (0) between cells and .

It is guaranteed that all cells are mutually reachable.

N K

i 0 j 0 i 0
′ j 0

′

⋮
i K−1 j K−1 i K−1

′ j K−1
′

v ⋯ v 0,0 0,N−2

⋮
v ⋯ v N−1,0 N−1,N−2

h ⋯h 0,0 0,N−1

⋮
h ⋯h N−2,0 N−2,N−1

N = 30
10 ≤ K ≤ 100
(i , j)k k k

(i , j)k
′

k
′ k

k

k′

v ⋯ v i,0 i,N−2 N − 1 j v i,j

(i, j) (i, j + 1)
h ⋯h i,0 i,N−1 N j h i,j

(i, j) (i + 1, j)

Output
First, output the wall placement information in the following format to Standard Output.

Each is a binary string of length . The -th character indicates whether a

wall is placed (1) or not (0) between cells and .

Each is a binary string of length . The -th character indicates whether a wall

is placed (1) or not (0) between cells and .

For positions where a wall already exists, either 0 or 1 may be output.

Next, output the group assignment information to Standard Output in the following format.

 is an integer between and representing the group to which the -th robot belongs. If

, then robot and robot belong to the same group.

Finally, output the sequence of operations to Standard Output in the following format.

 is a single character specifying the type of operation on turn . Use g for a group command and i

for an individual command.

 is an integer between and representing the group number or robot number targeted by

the operation on turn . If a group with no robots is specified, nothing happens.

 is a single character indicating the direction of the operation on turn , as follows:

Up: U

Down: D

Left: L

Right: R

Show example (https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?

lang=en&seed=0&output=sample)

v ⋯ v 0,0
′

0,N−2
′

⋮
v ⋯ v N−1,0

′
N−1,N−2
′

h ⋯h 0,0
′

0,N−1
′

⋮
h ⋯h N−2,0

′
N−2,N−1
′

v ⋯ v i,0
′

i,N−2
′ N − 1 j v i,j

′

(i, j) (i, j + 1)
h ⋯h i,0

′
i,N−1
′ N j h i,j

′

(i, j) (i + 1, j)

g 0 ⋯ g K−1

g k 0 K − 1 k

g =k g k′ k k′

a 0 b 0 d 0

⋮
a T−1 b T−1 d T−1

a t t

b t 0 K − 1
t

d t t

https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en&seed=0&output=sample
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en&seed=0&output=sample
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en&seed=0&output=sample

Input Generation
Let be a function that generates a uniformly random integer between and , inclusive.

Robot Generation

The number of robots is determined by .

The initial positions of the robots are chosen by selecting distinct coordinates uniformly at random

from the cells.

The destinations of the robots are similarly chosen by selecting distinct coordinates uniformly at

random from the cells.

Wall Generation

The number of wall segments is determined by .

Repeat the following times:

1. Randomly choose the direction of the wall from up, down, left, or right.

2. Determine the wall length .

3. For vertical walls, choose the starting point by

.

If the chosen is within an absolute distance of from any used in previously generated vertical

walls, redo the direction selection.

For upward walls, set to 1. For downward walls, set to 1.

Ignore any part that goes out of bounds.

4. For horizontal walls, choose the starting point by

.

If the chosen is within an absolute distance of from any used in previously generated horizontal

walls, redo the direction selection.

For leftward walls, set to 1. For rightward walls, set to 1.

Ignore any part that goes out of bounds.

5. After generating the wall, check whether all cells are still mutually reachable. If not, reset the wall

and restart the iterations.

rand(L,U) L U

K K = rand(10, 100)
K

N 2

K

N 2

W W = rand(0, 2)

W

L = rand(10, 20)
(i, j) i = rand(5,N − 5), j = rand(4,N − 6)

j 4 j

v , ⋯ , v i−L+1,j i,j v , ⋯ , v i,j i+L−1,j

(i, j) i = rand(4,N − 6), j = rand(5,N −
5)

i 4 i

h , ⋯ ,h i,j−L+1 i,j h , ⋯ ,h i,j i,j+L−1

W

Tools (Input generator and visualizer)
Web version (https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en): This is more

powerful than the local version providing animations and manual play.

Local version (https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.zip): You need a compilation

environment of Rust language (https://www.rust-lang.org/).

Pre-compiled binary for Windows

(https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4_windows.zip): If you are not familiar

with the Rust language environment, please use this instead.

Please be aware that sharing visualization results or discussing solutions/ideas during the contest is

prohibited.

Sample Input 1
30 59
8 18 11 17
8 23 17 15
1 12 11 7
19 17 24 22
23 9 8 20
21 17 26 10
4 19 12 29
19 29 7 7
19 24 12 19

Sample Output 1
00000000000000000000000000000
01000000000000000000000000000
00000000000000000000000000000
00000000000000000000001000000
00000000000100000000000000000
00000000000000000000000000001
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000
00000000000000000000000000000

https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.html?lang=en
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.zip
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4.zip
https://www.rust-lang.org/
https://www.rust-lang.org/
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4_windows.zip
https://img.atcoder.jp/awtf2025heuristic/sJKH3KO4_windows.zip

