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E: Cyclic GCDs
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A: Thumbnail

Let X denote the average of the representation values. All you have to do is to output the minimum index ¢
that satisfies |a; — X| = min; |a; — X

X is not always an integer, so you might care for its precision. In that case, you can calculate the minimum
index ¢ that satisfies |[Na; — NX| = min; |Na; — NX|. In this way, you do not need to care for the precision
since NX is always an integer.

The overall calculation can be done in O(N) time, which is sufficiently fast.
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B: Sum AND Subarrays

Let A = Ay,..., An(n+1)/2 be an array of partial sums of all possible contiguous subsequences. We want
to choose K of them and maximize their bitwise AND. Let’s consider that they are unsigned fixed-size (say,
64-bit) integers.

Intuitively, we want to choose K numbers so that the highest bit of their bitwise AND becomes 1 if possible,
because 2¢ is larger than Zf;é 2¢. Then we would find that if A has K or more elements with the highest bit
of 1, we can remove the others. Let A’ be the resulting array (A" = A if there are less than K numbers with
the highest bit of 0).

In any way we take K elements from A’, the highest bit of their bitwise AND is always the same, because
A’ consists of only numbers whose highest bit is 1, or A’ contains less than K numbers whose highest bit is 1
where we definitely need to choose at least one element of the highest bit of 0. That is, we can safely forget the
highest bit and work on the same problem with smaller size. We can apply the same approach to the second
highest bit, and so on. Once we iterate for all digits, we can take any K numbers and print their bitwise AND
as an answer—the bitwise ANDs are the same in any case. Note that it is always possible to take K elements
because each removal process does not make the number of elements less than K.

Determining one bit takes |A| = O(N?) time. With the assumption that a bit length of A; is constant, this

problem can be solved in O(N?) time.



C: k-DMC

For simplicity, a solution to Q = 1 is described here. It is enough to solve this restricted problem in O(N)
time.

For each index i such that S[i] =’C’, it suffices to find the number of pairs (j,1) that satisfy i — k < j <
1 <1i,8[j] = ’D?, S[l] = *M’. To achieve this goal, for each i we consider the interval [i — k,7) and manage the
number of occurrences of D’ M’ and [’D’, ’M’] (as subsequences) in it. Perform the following two operations

for each 1:

e Increase the number of ’D’ by 1 if S[i] =’D’, increase the number of M’ by 1 and the number of
[’D’, ’M’] by the number of *D’ if S[i] =’M’, and accumulate the number of [’D’, *M’] if S[i] =’C’.
e If i > k — 1, exclude S[i — k + 1] from the interval we consider after processing S[i]. This can be done in

the same way as the above operation.

Since it is obvious that this procedure works in O(NN) time, we can solve the original problem.



D: Square Rotation

In this editorial, we ignore non-black toys of TV-chan. For each toy, (z; mod D,y; mod D) is not changed
by the operation. Furthermore, a toy at position (z,y) can be moved to arbitrary position (2/,y’) such that
(z mod D,y mod D) = (2’ mod D,y mod D) and no other toys are at the position. This is achieved by moving
toys far enough and then arrange toys one by one in the lexicographical order of the target positions (z’,y’) by
performing operations of moving exactly one toy.

With this observation, we find that solving the following problem is sufficient.

Integers N, D and A;; (0 <i,j < D) are given. We need to arrange N points and an axis-aligned square
under the following conditions: (a) the number of points (x,y) such that (z mod D,y mod D) = (i,7) is

A, ; and (b) the axis-aligned square contains all points. Find the minimum side length of such a square.

Without loss of generality, we can assume that the position of the lower left corner of the square in square
area with diagonal line (0,0),(D — 1,D — 1). To simplify, we consider squares whose lower left corner is at
position (0, 0). For a square with side length aD +b (0 < a,0 < b < D), the numbers B, ; of points (z,y) such
that (z mod D,y mod D) = (i, ) can be represented as follows:

(a+1)2 (0<id,j <),
B; ;=4 a? (b <1,7),
a(a+1) (otherwise).

If A, ; < B; ; holds for all (4, j), a square with side length a.D + b can enclose all points. Since the number of
candidate positions of the lower left corner of the squares is D?, for fixed aD + b, we can solve the problem in
O(D*) time. By applying binary search on the side length of the enclosing square, we can reduce complexity
to O(N + D*log N) and obtain partial scores.

From the above equation, we should choose the minimum n such that max(A4; ;) < (n+1)? as a since a square
with side length nD + D —1 can always enclose all points. Moreover, B; ; is independent of b and its values form
four rectangles as in Figure 0. Therefore, we can determine whether (7, ) such that A; ; > B; ; exists or not
at once by cumulative sum technique. This improvement enables us to solve the problem in O(N + D?log D)
time and to achieve full scores.

This problem can be solved in O(N + D?) time, although this optimization may not be required. Instead of
performing binary searches for each candidate corner, we can keep the minimum side length and check whether
the side length is able to be reduced for each candidate. Since the minimum side length changes at most D

times, the time complexity of this solution is O(N + D?).
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E: Cyclic GCDs

First, let us sort the input array a in the non-decreasing order. As the order of elements does not matter, this
operation will not change the answer. The following argument assumes that a is sorted in the non-decreasing
order.

For a cycle p1 — ps — -+ — px — p1, let us call minle Gp, = Qmin, p; the cycle’s minimum value. Consider
checking the elements of a from left to right (hence in the non-decreasing order). Let us define DP[i][j] by the
sum of all products of the cycles’ minimum values when elements until a; are checked and j cycles are formed.

Then the transitions from DPJi][j] are the following two:

e Add i+ 1 to one of the existing j cycles. The order of the existing elements are not changed.

e form a cycle with the single element i + 1 (coefficient: a;41)

Let us find the coefficients of the first type of transitions. For a cycle p; — ps — -+ — px — p1 of size k, there
are k ways to insert ¢ + 1 in the middle of the cycle, since the number of gaps to insert ¢ 4+ 1 in is k. Summing
up these values for all cycles, we obtain the total of i. Because elements of any cycle are less than or equal to
i + 1, this transition does not change the cycles’” minimum values.

In the argument above, we found that there are two transitions, namely DP[i][j] — DP[i+1][j] (with coefficient
i) and DPJ[i][j] — DP[i + 1][j + 1] (with coefficient a;11). The initial value of DP is DP[0][0] = 1, where zero
elements are checked and zero cycles are formed. The value we want is the greatest common divisor (GCD) of
values b; = DP[N][i] (1 <i < N).

Define polynomials P;(t) (0 <4 < N) of degree at most N by

Py(t):= Y DP[i][j]t/.

-

Jj=0

Since the coefficients of transitions from DPJi][j] do not depend on j, for every i that satisfies 0 <i < N — 1,

the equality
Pipa(t) = (@it + 1) Pi(t)

holds. The equality P(0) = 1 is obvious. Therefore, DP[N][i] is the coefficient of ' in
PN(t) = (a1t+ 0) X ((lgt—f— 1) X oo X (aNt—|— (N — 1))

The answer we want is the GCD of these coefficients.

In finding this value, the following lemma is useful.

Lemma 1. Let P,Q be polynomials with integer coefficients. Let us denote by c(F') the GCD of all coefficients
of a polynomial F. Then ¢(PQ) = c¢(P)c(Q) holds.

Proof. Assume ¢(P) = ¢(Q) = 1 without loss of generality. It is enough to show ¢(PQ) = 1.

Let us use reductio ad absurdum. Assume ¢(PQ) = 1 and we are to prove contradiction. Then there exists a
prime number p such that ¢(PQ) is a multiple of p. Let P = ryt!+1_ 1t~ - 41, Q = sptF+sp_1tF 714+ - +5.
Because PQ = rsipt!t 4. .. either r; or s, is a multiple of p. We can construct another instance of polynomials
P,Q where ¢(P) = ¢(Q) = 1 and ¢(PQ) is a multiple of p, by lowering P’s degree if r; is a multiple of p or by
lowering @’s degree if s is a multiple of p. By iterating this process either P or @ becomes 0, which contradicts
c¢(P) =¢(Q) =1. O

By iteratively using this lemma, we obtain the equality ¢(Py(t)) = Hi]\:)l clagpit +1) = Hili_ol ged(ayq, i),

which gives an O(N log N)-time solution.

11



