
KEYENCE Programming Contest 2019 / ΩʔΤϯε ϓϩάϥ

ϛϯά ίϯςετ 2019 ղઆ

IH19980412, satashun

2019/01/13

A: Beginning

֤͕ࣈԿճొ͢Δ͔Λྻʹ͖͓ͯͬ࣋·͢ɻ

1, 4, 7, 9͕Ұͣͭొ͢ΔͳΒ YESɺͦ͏Ͱͳ͍ͳΒ NOΛग़ྗ͢Εྑ͍Ͱ͢ɻ

ղྫ: https://atcoder.jp/contests/keyence2019/submissions/3974382

B: KEYENCE String

จྻࣈߴʑ 100ͳͷͰɺऔΓআ͘ʮ࿈ଓͨ͠෦จྻࣈʯΛશ௨Γ͜͢ࢼͱ͕Ͱ͖·͢ɻ

֤ʑͷ߹ʹ͓͍ͯɺऔΓআ͔Εͳ͍จࣈΛݩͷจྻࣈͷॱ൪Ͱ݁߹ͯ͠ಘΒΕͨจ͕ྻࣈ”keyence”ʹͳ

Εɺ͜ͷจ͕ྻࣈΩʔΤϯεܕจྻࣈͰ͋Δ͜ͱ͕Θ͔Γ·͢ɻ

Ͱ͋Γ·ͤΜɻྻࣈจܕΩʔΤϯεྻࣈɺશͯͷ߹Ͱͦ͏ͳΒͳ͔ͬͨͱ͢Δͱɺ͜ͷจʹٯ

ղྫ: https://atcoder.jp/contests/keyence2019/submissions/3974383

1



C: Exam and Wizard

·ͣɺ Ai < Bi ͳΔ i ʹ͍ͭͯɺඞͣ Ai ̸= Ci ʹͳΔͨΊɺ͜ͷͷຊ࣭ɺ Ai ≥ Bi ͳΔ Ai Ͱɺ

Ai ̸= Ci ͳΔͷͷݸΛ࠷খԽ͢Δ͜ͱͰ͢ɻ

͜ͷɺAi < Bi ͳΔ i ʹ͍ͭͯɺ Bi − Ai ͷ૯Λ S ͱݺͿ͜ͱʹ͢Δͱɺ Ai ≥ Bi ͳΔ i ʹͭ

͍ͯɺ Ai −Bi ΛͰ͖Δ͚ͩগͳ͘બͼɺ૯Λ S Ҏ্ʹ͢ΔͱಉͰ͢ɻ

Αͬͯɺ࠷ॳʹ S Λ্ͨ͠ࢉܭͰɺAi ≥ Bi ͳΔ i ʹ͍ͭͯɺ Ai −Bi Λେ͖͍ॱʹ͖͍ͯݟɺࠓ·Ͱͷ

૯͕ S Ҏ্ʹͳΔ·Ͱ num ͨ͠ͱ͢Δͱɺ͑ݸ (Ai < Bi ͳΔ i ͷݸ) + num ʹͳΓ·͢ɻ

ҙ͖͢έʔεͱͯ͠ɺAi < Bi ͳΔ i ͕ͳ͍ (͑ 0)ɺ Ai ≥ Bi ͳΔ i ʹ͍ͭͯͷ Ai − Bi ͷ

૯͕ S ʹຬͨͳ͍ (͑ −1)ͳͲ͕͛ڍΒΕ·͢ɻ

2



D: Double Landscape

·ͣɺAi ͱ Bj ͷதͰಉ͕͋͡Δ߹͑ 0 Ͱ͢ɻҎԼɺAi ͱ Bj ͲͪΒશཁૉ͕ҟͳΔͷͱ

ɻάϦουʹ͓͍ͯɺx͢·͑ߟͯ͠ ͕ஔ͔Ε͏Δॴʹ͍ͭͯɺx ͕େ͖͍ॱʹ͠ߟ·͢ɻ

• x ͕ Ai ͱ Bj ͷ྆ํʹݱΕΔ߹

x ͷॴҰҙʹఆ·Γ·͢ɻ

• x ͕ Ai ͱ Bj ͷยํʹݱΕΔ߹

x ͕ Ai (ͷ߹ରশੑΑΓ΄΅ಉ͡Ͱ͢ٯ)Ε͍ͯΔ߹ͷΈड़·͢ɻݱʹ

x ͷॴͱͯ͋͠ΓಘΔͷͷݸɺ (Bj ≥ x ͳΔ j ͷݸ)Ͱ͢ɻ

• x ͕ Ai ͱ Bj ߹Εͳ͍ݱʹ

x ͷॴͱͯ͋͠ΓಘΔͷͷݸɺ(Ai ≥ x ͳΔ i ͷݸ) × (Bj ≥ x ͳΔ j ͷݸ)Ͱ͢ɻ

(ͨͩ͠ɺͦͷ͏ͪ N ×M − x ݸ x ΑΓେ͖͍͕ຒΊ͍ͯ·͢)

Ҏ্ͷΛશֻ͚ͯ߹ΘͤΕ͕͑ٻ·Γ·͢ɻྔࢉܭ O(NM) Ͱ͢ɻ

3



E: Connecting Cities

ลͷީิ͕͏ͷ··ͩͱࠓྑ͍Ͱ͕͢ɺ͑ࢥΊΔͩͱٻখશҬΛ࠷ຊతʹج O(N2) ຊͰɺ͜

ͷ··ͰઈతͰ͢ɻ

ΓํԿ௨Γ͔͋Δͱ͍ࢥ·͕͢ɺ͜͜ͰลͷީิΛ O(N) ຊʹߜΓɺͦΕΒΛ O(N logN) Ͱؒ࣌

ΊΔํ๏Λड़·͢ɻٻ

N ʹ͕খ͍͞ॱʹ৽ͨنɺʹࢢͷݸ 1 ͔Β N ͷ൪߸Λ͚ͭΔ͜ͱʹ͠·͢ɻ ͕͍͠߹దن)

ʹॱ൪ΛܾΊͯྑ͍Ͱ͢)

͢ΔͱɺҎԼͷ͕࣮ࣄΓཱͪ·͢:

• ൪߸ i ͷࢢͱɺͦͷࠨʹ͋Δ൪߸ 1 Ҏ্ i− 1 ҎԼͷࢢΛ݁Ϳಓ࿏ɺ࠷ݐઃίετ͕গͳ͍

ͷͷΈ͑ߟΕΑ͍ɻ

• ൪߸ i ͷࢢͱɺͦͷӈʹ͋Δ൪߸ 1 Ҏ্ i− 1 ҎԼͷࢢΛ݁Ϳಓ࿏ɺ࠷ݐઃίετ͕গͳ͍

ͷͷΈ͑ߟΕΑ͍ɻ

Ұͭͷূ໌ɺ൪߸ i ͷࢢΛ v ɺv ͷࠨʹ͋Δ൪߸ i ະຬͷࢢͱ v Λ݁Ϳಓ࿏ͷɺ࠷ݐઃίετ

͕গͳ͍ͷ͕ v ͱ uΛ݁Ϳͷͱ͠ɺ࠷খશҬʹ͓͍࣮ͯͨͬʹࡍಓ࿏ v ͱ w Λ݁ͿͷͰ͋ͬ

ͨͱ͢Δͱ (u ̸= w)

u ͱ v ͱ w Λ௨ΔαΠΫϧʹ͓͍ͯɺඞͣ v ͱ w Λ݁Ϳಓ࿏͕ίετ࠷େͰ͋Δ͜ͱ͕༰қʹࣔͤΔͷͰɺ

v ͱ u Λ݁Ϳಓ࿏Ҏ֎͑ߟͳͯ͘࠷খશҬ͕ಘΒΕΔ͜ͱ͕Θ͔Γ·͢ɻೋͭͷূ໌ରশੑΑΓಉ

༷ʹࣔͤ·͢ɻ

ͯ͞ɺ͋Δ্۠ؒͷݐઃίετ࠷খͷࢢΛ͚ͭݟΔͷ segment treeʹΑΓ 1 ճ͋ͨΓ O(logN) ؒ࣌

ͰٻΊΔ͜ͱ͕Ͱ͖ɺลͷީิ O(N) ຊʹͳ͍ͬͯΔͷͰɺྔࢉܭ O(N logN) ʹͳΓ·͢ɻ

ลͷީิΛ͋ͨͬߜͱɺΫϥεΧϧ๏Λ༻͍Ε࠷খશҬΛٻΊΔ͜ͱ͕Ͱ͖·͢ɻ͜ͷྔࢉܭ

O(N logN) ͳͷͰɺ͜ͷΛશମͰ O(N logN) Ͱղ͘͜ͱ͕Ͱ͖·ͨ͠ɻؒ࣌

4



F: Paper Cutting

·ͣɺείΞʹ͍ͭͯͯ͑ߟΈ·͠ΐ͏ɻͦΕͧΕͷํ͝ܗͱʹԿճΧϯτ͞ΕΔ͔Λ͢ํ๏͕͑ߟ

ΒΕ·͕͢ɺ͜ͷ··Ͱ͕ྔࢉܭେ͖͗͢·͢ɻ4 ͷΘΓʹɺࠨԼͷ࠲ඪ͕ (i, j) Ͱ͋ΔΑ͏ͳഁย

͕Χϯτ͞ΕΔճΛ·ͱΊͯ͑Δ͜ͱΛ͑ߟ·͢ɻ

໌Β͔ʹɺ͜ͷΑ͏ͳഁย x = i ͱ y = j ͰΔલଘ͠ࡏ·ͤΜɻͦͯ͠ɺͦͷޙͲͷΑ͏ͳૢ࡞Λ

ͯ͜͠ͷΑ͏ͳഁยৗʹ 1 ͚ͭͩଘ͠ࡏ·͢ɻରশੑΑΓɺجຊతʹ i, j ͷʹґΒͣಉ͡ճ͚ͩε

ίΞʹد༩͠·͢ɻ

͔͠͠ɺi = 0 ͷ߹ͱ j = 0 ͷ߹͔ݩΒΒΕ͍ͯΔͱ͑ߟΔ͜ͱ͕ग़དྷΔͷͰɺ߹͚ͯ͑͠

Δ͜ͱʹ͠·͢ɻ

H + W ຊͷ͏ͪ K ຊΛॱ൪ʹΔํ๏͕Կ௨Γ͋Δ͔ͯ͑ߟΈ·͠ΐ͏ɻ͜Ε H + W ·Ͱͷ

͔ΒͳΔॱྻͷ͏ͪલ K ΖޙΕΑ͘ɺ͑ߟͷ߹ͷΛݸ (H + W − K) ݸ ͷॱ൪Λແͯ͠ࢹ

(H +W )!/(H +W −K)! ௨ΓͱΘ͔Γ·͢ɻ֤ഁย͕Χϯτ͞ΕΔճͷظΛٻΊɺྻ࡞ૢʹޙ࠷

ͷݸΛ͔͚Δ͜ͱͰείΞͷΛٻΊΔ͜ͱ͕Ͱ͖·͢ɻK ൪·Ͱͷૢྻ࡞ʹ͍ͭͯͷҎԼͷ֬Λߟ

͑Δ্Ͱɺ K + 1 ൪Ҏ߱ॱྻʹͳ͍ͬͯΔͱͯ͑ߟ͍ߏ·ͤΜɻ

i ̸= 0, j ̸= 0 ͷͱ͖ɺx = i ͷޙʹ y = j ͕બΕΔ߹ɺείΞ y = j ͕ԿճʹબΕΔ͔ʹґΔ

ͷͰɺ͜ΕΛ t ճͱ͠·͢ɻ͜ͷΑ͏ͳࣄͷ֬ɺ1/(H +W ) ∗ (t− 1)/(H +W − 1) ͰɺείΞʹ

K + 1− t ༩͠·͢ɻyد = j ͷޙʹ x = i͕બΕΔ߹ಉ͡Ͱ͢ɻ͜ͷΑ͏ͳ (i, j) ͷ HW ௨Γ

͋Γ·͢ɻ

i = 0, j ̸= 0 ·ͨ i ̸= 0, j = 0 ͷͱ͖ɺt ճʹ 0 Ͱͳ͍ํͰΔͱͯ͠ɺ͜ͷ֬ 1/(H +W ) Ͱ

͋ͬͯɺείΞʹ K + 1− t ༩͠·͢ɻ͜ͷΑ͏ͳد (i, j) ͷ H +W ௨ΓͰ͢ɻ

i = 0, y = 0 ͷͱ͖ɺॳΊ͔Βଘ͢ࡏΔͷͰৗʹ K ༩͠·͢ɻد

Ҏ্Ͱ O(K) Ͱ͜ͷ͕ղ͚·ͨ͠ɻ

5



KEYENCE Programming Contest 2019 Editorial

IH19980412, satashun

2019/01/13

A: Beginning

Check if all of 1, 4, 7, 9 appear in the input.

Example: https://atcoder.jp/contests/keyence2019/submissions/3974382

B: KEYENCE String

Try all substrings.

Example: https://atcoder.jp/contests/keyence2019/submissions/3974383

1



C: Exam and Wizard

Obviously, if Ai < Bi holds, we cannot make Ai equal to Ci, so we are to minimize the number of

indices which satisfy Ai ≥ Bi and Ai ̸= Ci.

Let S be the sum of Bi −Ai where Ai < Bi holds. We should choose as few indices as possible where

Ai ≥ Bi and make the sum of Ai −Bi greater than or equal to S.

Therefore, calculate S, sort Ai − Bi in decreasing order, and pick them up until the sum gets greater

than or equal to S for the first time. If we choose num elements, the answer is (number of positions

where Ai < Bi) +num.

When the sum of Ai −Bi is less than S, output -1.

2



D: Double Landscape

If some value appears multiple times either in A or in B, the answer is 0. We assume that each in A

and in B, all elements are distinct. Let’s put values in decreasing order. When we are looking at x:

• when x appears both in A and in B

The position of x can be decided uniquely.

• when x appears either in A or in B

Assume that x is in A by symmetry. x can be in (the number of j where Bj ≥ x holds) positions.

• when x is neither in A nor in B

x can be in (the number of i where Ai ≥ x holds) × (the number of j where Bj ≥ x holds)

positions. Among them, values bigger than x already occupy N ×M − x positions.

Just multiply these values to know the answer. This works in O(NM) time.

3



E: Connecting Cities

We want to compute the MST of the graph, but a straightforward algorithm doesn’t work because

there are O(N2) edges. We first enumerate candidates of MST edges, and then compute the MST of the

graph with only those edges. There are two ways to find candidates:

Divide and conquer.

Let’s divide the array into two halves. Only consider edges between the two halves. When are we

interested in the edge between i and j such that 0 ≤ i < N/2 and N/2 ≤ j < N?

The cost of the edges can be written as f(i)+g(j), where f(i) = Ai−Di and g(j) = Aj+Dj. Let i0, j0

be the indices that minimize the values of f(i0), g(j0). We claim that the edge between i and j can be a

candidate only when i = i0 or j = j0. Otherwise, the three edges (i, j0), (i0, j), (i0, j0) are cheaper than

the edge (i, j), so this edge can’t be included in the MST. Thus, we limit the number of edges between

the two halves to O(N).

If we apply divide-and-conquer with the observation above, the total number of candidate edges will

be O(NlogN), and this solution works in O(Nlog2N).

Sort by Ai.

For simplicity, assume that the values of Ai are pairwise distinct.

Consider a particular city (call it x). We can prove the following sbout the edges that connect this

city and smaller city (cities that satisfy Ai < Ax):

• Among edges that connects x and all smaller cities to the left of x, we should only consider the

cheapest edge.

• Among edges that connects x and all smaller cities to the right of x, we should only consider the

cheapest edge.

Let’s prove the first claim. Suppose that among edges that connects x and all smaller cities to the

left of x, the chapest one is (x, y). Then, for each other z that satisfies z < x and Az < Ax, both edges

(x, y) and (y, z) are cheaper than (x, z). Thus, (x, z) never becomes the MST edge. The second claim is

similar.

This way, the candidates will be O(N), and this solution works in O(NlogN).

4



F: Paper Cutting

We’ll compute the expected score when we choose K cuts uniformly at random. (The answer is this

expected value times N(N − 1)...(N −K + 1), where N = H +W ).

First, let’s find a simpler way to compute the score. For each point (i, j), we count the number of

times a rectangle is counted whose lower-left corner is at (i, j). Call this number f(i, j). The score is the

sum of f(i, j) for all (i, j)(0 ≤ i ≤ W, 0 ≤ j ≤ H).

How to compute the expected value of f(i, j)? For simplicity, assume that i ̸= 0, j ̸= 0.

In order for f(i, j) to be nonzero, the cuts at x = i and y = j must be made (otherwise (i, j) can’t be a

lower-left corner). Once these two cuts are made, each time we make a cut, the value of f(i, j) increases

by one.

Let N = H +W . The probability that both of the two cuts are made is:

(K
2

)
(N
2

) (1)

and for each line except for the two lines made above (call this line L), the probability that both of

the two cuts and the cut at L are made, and L is the last cut of these three cut is (this means that the

value f(i, j) is increased by one by line L):

(K
3

)
(N
3

) × 1

3
(2)

Thus the expected value of f(i, j) is:

(K
2

)
(N
2

) +

(K
3

)
(N
3

) × 1

3
× (N − 2) (3)

Similarly, we can compute the values of f(i, j) for cases i = 0 and j = 0. (These cases should be

handled separately because the lines x = i or y = j may exist from the beginning in these cases.)

The bottleneck is the computation of N(N − 1)...(N −K + 1), and this solution works in O(K) time.

5


