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A: Sum of Interior Angles
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#include <iostream>
using namespace std;

int main(){
int N;
cin >> N;
cout << (N—2)%180 << endl;




B: Sumo
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#include <iostream>
#include <string>
using namespace std;

int main(){

string s;

cin >> s;

int cnt = 0;

for(int i =0 ; i < s.size() ; i ++){
if(s[i] = ’x7)cnt ++;

}

if (cnt <= 7)puts("YES”);
else puts(”NO”);




C: Best-of-(2n-1)
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D: Maximum Sum of Minimum
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E: Product of Arithmetic Progression
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F: Random Tournament
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A: Sum of Interior Angles

The sum of the interior angles of a regular polygon with N sides is 180(N —2)°. A sample implementation in C++ follows:

#include <iostream>
using namespace std;

int main(){
int Nj
cin >> N;
cout << (N—2)%180 << endl;




B: Sumo

If Takahashi can have 8 or more wins when he wins all the remaining matches, there is a possibility that he can participate
in the next tournament. Conversely, if there is a possibility that Takahashi can participate in the next tournament, he can
have 8 or more wins when he wins all the remaining matches. Thus, what we need to do is to check if he can have 8 or
more wins when he wins all the remaining matches, which is equivalent to having less than 8 losses in the first & matches.
Therefore, we can solve the problem by counting the occurrences of x in the string .S, print YES if there are 7 or less x and
print NO if there are 8 or more. A sample implementation in C++ follows:

#include <iostream>
#include <string>
using namespace std;

int main(){
string s;
cin >> s;
int cnt = 0;
for (int i
i

}
if (ent <= 7)puts("YES”);
else puts(”NO”);

0 ; i < s.size() ; i ++){
[

f(s[i] = ’x7)cnt ++;




C: Best-of-(2n-1)

Let us first consider the case with no draws. Let X (M) denote the probability that the game is played exactly M times.
If M < N—1or 2N < M, X(M) = 0. Otherwise, the game will be played exactly M times if Takahashi has exactly
N — 1 wins in the first M — 1 games and he also wins the M-th game or Aoki has exactly NV — 1 wins in the first M — 1

games and he also wins the M-th game. Thus,
xon= () () (o) ) ()

Now, let us consider the case involving draws. Let Y (M) be the expected number of games played until there are M

1
non-draw games, including draw games. Then, Y (M) = M - % This is intuitive, and we can prove it as follows.

Y (0) = 0 holds. Let Mbe a positive integer. If the first game is drawn, the expected number of games played
from now on is Y/(M); If the first game is not drawn, the expected number of games played from now on is
Y (M —1). Thus, for any positive integer M,
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Therefore, the answer is

2N-1 2N—1 3 ~
Zomron= 2 (D () 6 () () ) e

B 2%‘:1 (M - 1) (ANBM-N 4 AM-NpN)pf
- _ N-1 —
= AN -1 100¥=1(100 - C)

We can precompute the binomial coefficients and powers in the formula in O(NV) time.



D: Maximum Sum of Minimum

We can assume that ¢; > co > ---cny by sorting them in advance. Let us choose k of the edges in T', and let U be the
subgraph of T consisting of those edges and their endpoints. Since U is a forest, it has k + 1 or more vertices. Thus,
the minimum among the integers written on the & edges is cx41 or smaller. It follows from this observation that, if
we let 1 > x9 > ---xxy_1 be the integers written on the edges in T, z; < ¢;4+1 holds. Thus, the score never exceeds
co+c3+---+cn.

Conversely, we can make the score ¢ + ¢3 + -+ - + ¢y by writing the integers as follows:

e Choose an edge e; in T and write ¢; and ¢ on its endpoints.

e Do the following operation for £ = 2,3,..., N — 1: We can choose an edge e, in T so that the subgraph of T
consisting of ey, e, ..., e, and their endpoints. One of the endpoints of such an edge ey, is still empty, and we write
cig+1 on that endpoint.

Then, c¢;;1 will be written on the edge e; when the score is evaluated. Since it takes only O(N?) time to check all the
edges each time we choose an edge, so we can naively implement this algorithm.
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E: Product of Arithmetic Progression

Notice that if all queries satisfy d = 1, we can easily solve the problem.

In this case, we want to compute the product z(z + 1)...(z +n — 1). If there is a multiple of 1000003 between z and
x 4+ n — 1, inclusive, the answer is zero. Otherwise, the answer is (z +n — 1)!/(z — 1)!, and by precomputing factorials
(and their inverses) we can answer each query in O(1).

How to solve the problem in general cases? In case d = 0, the answer is ™. Otherwise, notice that if we divide each
term by d, we get an arithmetic progression with difference 1:

x/d,x/d+1,...,x/d+ (n—1)

Thus, the answer is the product of these n terms (which can be computed in the way described above) times d".
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F: Random Tournament
For1<i<j<N,let

dpl[i][j] := whether Person 7 may become the champion when only Person 4, Person i + 1, ..., Person j are considered

dpr([j][i] := whether Person j may become the champion when only Person 4, Person i + 1, ..., Person j are considered

Then, Person ¢ may become the champion if and only if dpl[i][N] = dpr[i][1] = true. More generally, when only Person
i, Person i 4+ 1, ..., Person j are considered, Person k (i < k < j) may become the champion if and only if dpl[k][j] =
dpr(k][i] = true.

Let us consider the transition of dpl[i][j]. First, if there exists k (i < k < j) such that Person ¢ defeats Person k and
dpl[k][j] = dpr[k][¢+ 1] = true, Person k may become the champion when only Person i+ 1, Person i+ 2, ..., Person j are
considered, so dpl[i][j] = true. Conversely, we will show that such k exists if dpl[i][j] = true. Let us only consider Person
i, Personi + 1, ..., Person j, and assume that they played matches so that Person i becomes the champion. Additionally,
let Person ki, Person ko, ..., Person k; (k1 < ko < --- < k;) be the persons defeated by Person i. Then, if we first play
all the matches not involving Person ¢, then play a match between Person k; and Person ks, then between the previous
winner and Person ks, ..., then between the previous winner and Person k;, then between the previous winner and Person
i, Person i can become the champion by just playing one match. Additionally, if we let Person k be the winner of the
second last match, this &k satisfies the condition above.

Therefore, the transition of dpl[i|[7] is:

dpl[i][j] = 3k € [i + 1, 4], Ai x, = 1 A dpl[k][j] = true A dpr[k][i + 1] = true
Similarly, the transition of dpr|[j][i] is:
dprjlli] = 3k € [i,j — 1], Ak; = 0 Adpl[E][j — 1] = true A dpr[k][i] = true

By finding the values in ascending order of j — i, we can compute the whole tables with time complexity O(N?).
Finally, we can do such a computation in parallel with bitsets.
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