EEHE— 71 7T I v ERETE/NIKKET Programming
Contest 2019 figqi

writer : maroonrk

201941 H 28 H

For International Readers: English editorial starts on page 6.

A : Subscribers

WA DOFEZMWEH L TOEABELTHY) 2AfHIZ AL BDIBENIWATHY, HY 9 2EME
A+B<N %5130, 29 CThiJtu A+ B— N TT,

if XEFIRbLYIC, L OFHEICHETHEEIN TV nin P nax 2fi) 2 LbT&E T, DT
IZ Python3 ThOa—FzRL 7,

1 N, A, B = map(int, input().split())
2 print(min(A, B), max(0, A + B - N))

B : Touitsu

XFEHIFDBALE 1,2, ..., N iIZoWT @I 3 2DXF A, B;, C; ZHiAE T, 3 DOXFRTRTHAE
WE 20 32095 200 L KD 1 2OARBELUL 1 MOEENZ DMEICOWTREICR D £7,

FEIZIZEZ 5 for XEMHIZLICHD, IHIXEFNFNOMBEICO VT T 27012 if X WD
forOFREZMI ZLicz) £7,

1 N = int(input())

2 A, B, C = input(), input(), input()

3 ans = 0

1+ for i in range(N):

5 ans += len(set([A[i], B[il, C[il1)) - 1

6 print(ans)

C : Different Strokes

MHEOME: TTRARIICERE C ADME 2 BEEORAL 205 TRENICHEARZ AR 2BHEEORAL Z5]0»
oMy # X ELET, BRCAIF X Z2RAMELEI EL, HERSAIF X Z2Rr/MEL LS ELET,

HLARIAVBTRTOREZARLERETSE, X =—(b1+...+by) EHDET, LaL, FEHBIC
FEREC A DRI A ML B, FECAPHI i ZBRZTEIC X 2296 a; +b; TOWMATHEE
T, o TZOMEIR, EECADARDEIE i #BRZIETa; +b; 4 ¥ FOEFEEZHB T, ERAIAE
B2 BRTOMLHO NV E LTORASTT (BoNABEAI —(bi+...+by) ZRTIBHEEZH D £T),
i, BEE a; +b; DBIHICY —F$5 2 ETEITET,

D : Restore the Tree
22

HFINC & D ADDBRIETHR O EDPRFEI N TV S 720, HEIC 1 226 N FTOHFFEZIRNEL TRDOE
a7z T XTI LB PRI ALY — ML) O(N+ M) RETITAET: 779 70& M u— vl
2V Tu<v THb,

COFLWI 727128V T, HA 1 2O RORTH D, ZNUANDOKTHL v 1220 T, JLOKRIZEIT S
v DBUTA w — v BEETZEIBRRD w THLI L2 ET, 246, o — v PFEETDE
I BRTEN z (2 # po: TEORIZEIT % v O IZO0T, 2 W& p, DWETHD, Lo Ta<p, TH2

"5 TY,

E : Weights on Vertices and Edges

MRACIRREIC B 1) 2 SN T, IO BEADKE W) OEBEMICR 2 L% L £T, 4 e DMEHIIC R 240
HTEMZ, e o, e A TOEADADAZMS TITF ZTESZINIZE L 72 £ Fi2, FIZE L LHEOEAD
Ao e DEAM LIRS LT,

BT DOT, BEHiICZ20%F 2y 7 LET, £7. MOV 77 EE8% 0 N HAREZRFEDL, o wrs 5
T7ERPICHBLET, R, G077 7DUEBEADNSVIEIZZD 77 7 NEBMLTWEET, e 238
MU Z 7 IEBISH e DIRT 2855 D BEADRMDI G iU e DMEHIC 2 20289 DDF = v 7 M7
ZFET, #LCZiZ, Union-Find % &2 WS EEHEIZITZ T,

Riz, AZ A A POBIHICERTHWEET, WELHeZRTWRELET, e 2T I EMMEL TV I25E
. BRI LERA, e 28T 2 EDIEL TRV, BROBIC E>TWL2EAIE, e 2fliv, #
206 e UTOEADUDAZWS TR 2D TRTETIEICLET, Z2)TRVEA, e BT I LI
TEhWVWEbrhET,

ZOTNLIY ZLDIENER, BEARKOAIZOVTETLrALZELSHETESZ I Lo, MEICH
TRIRNEIC K> TREET, £, e MTOERADUADAZZMS T 210D TXTET, L) FfEC
VTR, CERRINAEAPHEMNOED» SERIND 2 ENR v, RRIEE2ETON + M) 1Kk
£7,

ZOT7NTY R8I, WEERTY — FTBEIHBR VR Y 21250 ON + MlogM) TEHfEL £ 7,

F : Jewels

HIZOWT, ZOBDIEI RO E V2 ODEAZRTICLET, 2L T, X7OEALDIfEEZ, 2o
DAfED I E L TEBE X T,

I LT, TR TOFEADMIEIEL2 L LTEEET, TRTOEAZMEDKENEICY — L, Hi
MPORTWEET, His s MOEALZZDEFRESIEDTELILEEZI)THRVLVEAEBHET, TE
ZODIZ, BrI)ErBHE 2+ 1 BHOEFADBRTIZZ-2TVSE EETY, Hirs cfloEAhzZz0% %
HERZEWTELLRS, ZNUPHLPICRERIENT DT, 2 THEVEHIIOWTEZET,

Hig o x — 1 HOEAIE, ZOEFELRILEDTEET, 22T, IS v— 1 EOERZEAIREZH
HWIZLC, 1 HFEAZHEPTHEEZEZET, 22T UTOX) BEGEELET,

o P: FLMERRET 2 A BRI N TV HDEATH > T, BEEIEINTE D, Z DOl top2 I1Z 1%
EENVbo, DES

o Q: JHERFET 2 ALl LEIIN TV A EDEATH > T, BEEINTVUEVLL D, DEA

o R: FLUEIREETH k9 £ 2 M LiEIZN T 280, lifll top2 DEA DI, DES

o §: FLUERAET 0 I ITN TV 2D, flifl top2 DEAD T, DES

o T FLUEIRAET 0 BN TV 2D, llif top3 DEAD 3 Ofl. DHEA

SEMERRED S 1 H5A 280 U Tz AL § 2753, IFD 339 —v 2E 2 ULR BT,

e Q5 1EATHPT
o P25 1HEATHEHL, S»56 1 XTIEATHEPYT
e RO 1 RTIEATHL, TH5 123 2% EATHRT

M2 OEERIZ BN U £ 2%, B 2 — 1 ZAEORKE VI > TWw2 Ew) FHEEME) &, 2D 33
F =V PAME) FXEBT LI ETLERED 3 RN —v DI b TR BAZL I ENTELLI EBDMD
7,

HElF, BELSFEHERD 2O, £4 P,Q,R,S, T #HMHMIZ L\ WTT, P,Q,R,S, T ICHE %
F. EEOMA, HIFR, RA. BRADOEEZDT, ZHIEHIAIL stdiset B ERHCE I ETHEBAET,

EoTZDT7NTY XL O(NlogN) R TEIfEL ., Z OREZ R DIicHoaEs T,

1

2

1

NIKKEI Programming Contest 2019 Editorial

maroonrk

Jan 27, 2019

A : Subscribers

The maximum possible number of respondents subscribing to both newspapers is the smaller of A and
B, and the minimum possible number of such respondents is 0 if A+ B < N, and A+ B — N otherwise.
Instead of using if statements, you can also use the functions min and max that are implemented in

many languages by default. Python3 code follows:

N, A, B = map(int, input().split())
print (min(A, B), max(0, A + B - N))

B : Touitsu

For each position 1,2, ..., N in the strings, match the three characters A;, B; and C; separately. If the
three characters are all different, we need two operations for that position; if two of the three are the
same but the other one is different, we need one operation.

You will most likely use a for statement in the implementation, and if statements or some other

means to process each position. Python3 code follows:

N = int(input())
A, B, C = input(), input(), input()
ans = 0
for i in range(N):
ans += len(set([A[i]l, B[il, C[ill)) - 1

print (ans)

C : Different Strokes

Let X be the value in question: “the sum of the happiness Takahashi earns in the end” minus “the sum
of the happiness Aoki earns in the end”. Takahashi tries to maximize X, while Aoki tries to minimize it.
If Aoki would eat all the dishes, X = —(b; + ...+ by). Actually, however, Takahashi also eats some
dishes, and each time Takahashi eats Dish ¢, X increases by a; + b; from here. Thus, the problem is
equivalent to the case where only Takahashi earns a; + b; points happiness by eating Dish i, and Aoki
earns nothing from eating the dishes (we need to add —(b; +...+by) to the answer). This can be solved

by sorting the dishes in ascending order of a; + b;.

D : Restore the Tree

Since the constraints guarantee that the input is valid, by topological sorting we can renumber the
vertices 1 to N so that u < v for each edge v — v in the graph, in O(N 4+ M) time.

In this new graph, it can be seen that Vertex 1 is the root of the original tree, and for each of the
remaining vertices, v, the parent of v in the original tree is the largest w such that there is an edge
w — v. This is because, for each of the vertices z (x # p,: the parent of z in the original tree) such that

there is an edge * — v, x is an ancestor of p,, and thus x < p,.

E : Weights on Vertices and Edges

Let us find all the edges that can possibly be the heaviest edge in a connected component at the final
state. Edge e can be such an edge if the total weight of the vertices that can be reached from e by
traversing only edges with weights not greater than that of e.

For each edge, let us check if this condition is satisfied. First, we have a new graph with N vertices
in the original graph and no edges. Then, we add the edges in the original graph in ascending order of
weight. We can see if the condition is satisfied for edge e if we can find the total weight of the connected
component that contains e just after e is added. This can be found efficiently by using data structures
such as Union-Find.

Then, let us go over the edges in descending order of weight. Assume that we are now looking at edge
e. If it is already determined that e remains in the final graph, we do nothing particularly. If it is not
already determined but e can possibly remain in the final graph as we discussed earlier, we decide to
use e in the final graph and also the edges that can be reached from there by traversing only edges with
weights not greater than that of e. In the remaining case, we see that e cannot remain in the final graph.

The validity of this algorithm can be shown by induction on the number of edges, since it can correctly
determine if the heaviest edge can remain in the final graph or not. Regarding the operation where we
“decide to use the edges that can be reached from e by traversing only edges with weights not greater
than that of €”, the total time taken by these searches is O(N + M), since a vertex or edge visited once
during these searches will never be visited again.

The slowest part of this algorithm is sorting the edges by weight, and works in O(N + M log M) time.

F : Jewels

For each color, let us pair the two most valuable jewels, and set the values of these jewels as the average
of the two.

By giving perturbation, we can assume that all the jewels have different values. Let us sort the jewels
in descending order of value, and go over from front to back. In some cases we can just choose the z
jewels from the front, and in some other cases we cannot. More specifically, it is when the z-th and
(z 4+ 1)-th jewels are paired that we cannot just choose the x jewels from the front. Below, we will only
consider this case, since it is optimal to just choose the x jewels from the front if it is possible.

We can choose to take the — 1 jewels from the front. With respect to the case where the x — 1 jewels
from the front are taken (we will call it “the base case”), let us consider how we have one more jewel.
Let us define the following sets: (Below, we will call a color used if two or more jewels of that color are

chosen in the base case, and unused otherwise.)

e P: the set of the jewels of a used color that are chosen now but not among the two most valuable
jewels of the color

e (): the set of the jewels of a used color that are not chosen now

e R: the set of the pairs of the two most valuable jewels of a used color

e S: the set of the pairs of the two most valuable jewels of an unused color

e T the set of the triplets of the three most valuable jewels of an unused color

In order to maximize the total value, we only need to consider the following three ways to have one

more jewel:

e Add one more jewel from Q.
e Remove one jewel that is in P, and add a pair of jewels from S.

e Remove a pair of jewels that is in R, and add a triplet of jewels from T'.

We will omit the detailed proof, but it can be seen that any other way to have one more jewel is not
better than one of these three ways by applying proper transformations, using the fact that the z — 1
jewels from the front is taken in descending order of value.

Now, we only need to maintain the sets P, @, R, S and T while going over the jewels. The operations
required are insertions and deletions of elements and finding the minimum and maximum elements in
sets, and this can be done by data structures such as std::set.

Thus, we have an algorithm that works in O(N log N) time, which is fast enough.

10

